Drought is a significant global issue affecting agricultural production, and the utilization of beneficial rhizosphere microorganisms is one of the effective ways to increase the productivity of crops and forest under drought. In this study, we characterized a novel growth-promoting dark septate endophytes (DSE) fungus R16 (Dothideomycetes sp.) derived from blueberry roots. Hyphae or microsclerotia were visible within the epidermal or cortical cells of R16-colonized blueberry roots, which was consistent with the typical characteristics of DSE fungi. Inoculation with R16 promoted the growth of blueberry seedlings, and the advantage over the control group was more significant under PEG-induced drought. Comparison of physiological indicators related to drought resistance between the inoculated and control groups was performed on the potted blueberry plants, including the chlorophyll content, net photosynthetic rate, root activities, malondialdehyde and H2O2 content, which indicated that R16 colonization mitigated drought injury in blueberry plants. We further analyzed the effects of R16 on phytohormones and non-structural carbohydrates (NSCs) to explore the mechanism of increased drought tolerance by R16 in blueberry seedlings. The results showed that except for the gibberellin content, indole-3-acetic acid, zeatin and abscisic acid varied significantly between the inoculated and control groups. Sucrose phosphate synthase and sorbitol-6-phosphate dehydrogenase activities in mature leaves, the key enzymes responsible for sucrose and sorbitol synthesis, respectively, as well as sorbitol dehydrogenase, sucrose synthase, cell wall invertase, hexokinase and fructokinase in roots, the key enzymes involved in the NSCs metabolism, showed significant differences between the inoculated and control groups before and after drought treatment. These results suggested that the positive effects of R16 colonization on the drought tolerance of blueberry seedlings are partially attributable to the regulation of phytohormone and sugar metabolism. This study provided valuable information for the research on the interaction between DSE fungi and host plants as well as the application of DSE preparations in agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpae105DOI Listing

Publication Analysis

Top Keywords

drought tolerance
12
blueberry seedlings
12
inoculated control
12
control groups
12
drought
9
novel growth-promoting
8
growth-promoting dark
8
dark septate
8
phytohormones non-structural
8
non-structural carbohydrates
8

Similar Publications

Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.

View Article and Find Full Text PDF

Rapid radiation of a plant lineage sheds light on the assembly of dry valley biomes.

Mol Biol Evol

January 2025

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Southwest China is characterized by high plateaus, large mountain systems, and deeply incised dry valleys formed by major rivers and their tributaries. Despite the considerable attention given to alpine plant radiations in this region, the timing and mode of diversification of the numerous dry valley plant lineages remain unknown. To address this knowledge gap, we investigated the macroevolution of Isodon (Lamiaceae), a lineage commonly distributed in the dry valleys in southwest China and wetter areas of Asia and Africa.

View Article and Find Full Text PDF

Background: Arbuscular mycorrhizal (AM) fungi form a highly adaptable and versatile group of fungi found in natural and man-managed ecosystems. Effector secreted by AM fungi influence symbiotic relationship by modifying host cells, suppressing host defense and promoting infection to derive nutrients from the host. Here, we conducted a reference-based transcriptome sequencing of Funneliformis mosseae BR221 to enhance understanding on the molecular machinery involved in the establishment of interaction between host and AM fungi.

View Article and Find Full Text PDF

Maize ( L.) is a widely grown food crop around the world. Drought stress seriously affects the growth and development process of plants and causes serious damage to maize yield.

View Article and Find Full Text PDF

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!