Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fiber-shaped electrochemical capacitors (FSECs) have garnered substantial attention to emerging portable, flexible, and wearable electronic devices. However, achieving high electronic and ionic conductivity in fiber electrodes while maintaining a large specific surface area is still a challenge for enhancing the capacitance and rapid response of FSECs. Here, we present an electric-field-assisted cold-wall plasma-enhanced chemical vapor (EFCW-PECVD) method for direct growth of vertical graphene (VG) on fiber electrodes, which is incorporated in the FSECs. The customized reactor mainly consists of two radio frequency coils: one for plasma generation and the other for substrate heating. Precise temperature control can be achieved by adjusting the conductive plates and the applied power. With induction heating, only the substrate is heated to above 500 °C within just 5 min, maintaining a low temperature in the gas phase for the growth of VG with a high quality. Using this method, VG was easily grown on metallic fibers. The VG-coated titanium fibers for FSECs exhibit an ultrahigh rate performance and quick ion transport, enabling the conversion of an alternating current signal to a direct current signal and demonstrating outstanding filtering capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c05493 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!