Iron(III) Complexes with Pyridine Group Coordination and Dissociation Reversible Equilibrium: Cooperative Activation of CO and Epoxides into Cyclic Carbonates.

Inorg Chem

State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China.

Published: September 2024

Herein, a series of [ONSN]-type iron(III) complexes were synthesized. A binary catalytic system in combination with iron complexes and tetrabutylammonium bromide (TBAB) exhibited high activity for the synthesis of cyclic carbonates from CO (1 atm) and terminal epoxides at room temperature. Additionally, single-component iron complexes without using additional TBAB as nucleophiles also showed high activity for the cycloaddition of CO and terminal epoxides under 80 °C and 0.5 MPa of CO. This study demonstrates that single-component iron catalysts provide a competitive alternative to binary catalytic systems for the synthesis of cyclic carbonates from CO and epoxides. Mechanistic studies on a single-component iron catalytic system suggest that the temperature serves as a role of responsive switch for controlling the coordination and dissociation of pyridine bearing iron catalysts detected using in situ infrared spectroscopy, and uncoordinated pyridine activates CO to form carbamate. Studies of electrospray ionization high-resolution mass spectrometry reveal that an iron center was used as a Lewis acidic site, free halogen anions from the iron center were used as a nucleophilic site, and coordinated pyridine was released from iron complexes to activate CO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c02452DOI Listing

Publication Analysis

Top Keywords

cyclic carbonates
12
iron complexes
12
single-component iron
12
ironiii complexes
8
coordination dissociation
8
binary catalytic
8
catalytic system
8
iron
8
high activity
8
synthesis cyclic
8

Similar Publications

The carbon dioxide (CO) capture and utilization strategy has emerged as an innovative and multifaceted approach to counteract carbon emissions. In this study, a highly porous muffin polyhedral barium (Ba) ̵ organic framework (BaTATB; HTATB = 4,4',4″--triazine-2,4,6-triyl-tribenzoic acid) was synthesized solvothermally. The three-dimensional honeycomb pore architectures were densely populated with Lewis acidic Ba(II) metal sites and basic nitrogen-rich triazines.

View Article and Find Full Text PDF

Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal-organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a promising strategy. Herein, the fabrication of hierarchical conductive MOF/LDH/CF nanoarchitectures (M-CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported.

View Article and Find Full Text PDF

Retraction of 'Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant' by Subodh Kumar , , 2015, , 11860-11866, https://doi.org/10.1039/C5DT01012H.

View Article and Find Full Text PDF

Estimation of light utilisation and antioxidative protection in an alpine plant species (Soldanella alpina L.) during the leaf life cycle at high elevation.

Physiol Plant

January 2025

Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à L'énergie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National de Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, Grenoble cedex 9, France.

Photosynthesis, electron transport to carbon assimilation, photorespiration and alternative electron transport, light absorption of the two photosystems, antioxidative protection and pigment contents were investigated in S. alpina leaves. S.

View Article and Find Full Text PDF

In our work, we report superior electrochemical performance of optimized 3D nanostructured, nickel-cobalt carbonate hydroxide hydrate (NiCo-CHH (1 ≤ x ≤ 2)) materials with flower like morphology synthesised via one-step hydrothermal methods. A Ni rich sample (x = 1) demonstrate better specific capacitance and the improvement is attributed to more oxygen deficient neighbourhood of Ni compared to that of Co. The structural, morphological and electronic properties of the samples were investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), field emission electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!