Aging is a process of time-associated depletion in the physiological functions, essential for the survival and reproducibility of living beings. Some age-related disorders can be successfully controlled with some biomedical techniques or pharmaceutical approaches. There are some precise remedies that demonstrate conspicuous promise in the preclinical and clinical setup of extending lifespan or enhancing health by altering natural senescence. The sirtuin family of proteins is one of the most favorable targets for antiaging strategies. Sirtuins were initially identified as transcription repressors in yeast, but today they are known to exist in bacteria and eukaryotes, as well as humans. The SIRT (1-7) family of proteins in humans is made up of seven members, each of which has either mono-ADP ribosyl transferase or deacetylase activity. Researchers suggest that sirtuins are essential for cell metabolism and play a major role in how cells react to various stimuli, such as oxidative or genotoxic stress. A healthy lifestyle, which includes exercise and a balanced diet, has been demonstrated to impact health span by adjusting the levels of sirtuins, suggesting the involvement of sirtuins in extending human longevity. The hunt for sirtuin activators is among the most extensive and comprehensive research subjects in the present scenario. Some optimism has been generated to investigate antiaging therapies by natural compounds, such as curcumin and others. This review article highlights the role of sirtuins in native senescence and their primordial roles in the progression of several life-threatening diseases. Further, it also provides recent information on the sirtuin activators and inhibitors and their therapeutic benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbt.23812 | DOI Listing |
Front Biosci (Schol Ed)
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
Department of Biological Sciences, Virtual University of Pakistan, 55150 Lahore, Punjab, Pakistan.
Background: Vertebrae protein-coding genes exhibit remarkable diversity and are organized into many gene families. These gene families have emerged through various gene duplication events, the most prominent being the two rounds of whole-genome duplication (WGD). The current research project analyzed a unique class of genes called "singletons".
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out.
Aim: We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (, , , , and ) are associated with the risk and clinical features of IS.
J Integr Neurosci
December 2024
Department of Neurology, Hainan West Central Hospital, 571799 Danzhou, Hainan, China.
Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.
Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!