Preparing high-quality perovskite films is a decisive step toward realizing highly efficient and stable perovskite solar cells (Pero-SCs). Water is a key factor affecting the stability of the Pero-SCs. Here, the widely used water adsorbents chitosan, sorbitol, and sodium hyaluronate (NaHA) were used as hydrophilic layers on the upper interface of the perovskite to form a barrier against water. The water adsorbents also passivated defects on the surface of the perovskite active layer due to their -OH and -COOH functional groups. The NaHA-modified devices showed the best power conversion efficiency (PCE) (PCE = 21.74%). Although the NaHA-modified Pero-SCs showed optimal photovoltaic performance, the stability of the modified devices decreased due to the strong water adsorption ability of NaHA, while with moderate water adsorption ability sorbitol-modified devices exhibited good stability and PCE. The devices were tested in the dark and room temperature at different humidity levels for 800 h. At low humidity (25% ± 5% RH), the PCEs of the sorbitol- and NaHA-modified devices were maintained at 80% and 71% of the initial values, respectively. At high humidity (75% ± 5% RH), the PCE was maintained at 64% and 23% of the initial values, respectively. This work provides an avenue to select adsorbents with suitable water absorption ability as the interface modification layer, thus reducing the water erosion of perovskite films and obtaining highly stable inverted Pero-SCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c08204 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
SrFeO (SFO) offers a topotactic phase transformation between an insulating brownmillerite SrFeO (BM-SFO) phase and a conductive perovskite SrFeO (PV-SFO) phase, making it a competitive candidate for use in resistive memory and neuromorphic computing. However, most of existing SFO-based memristors are nonvolatile devices which struggle to achieve short-term synaptic plasticity (STP). To address this issue and realize STP, we propose to leverage ferroelectric polarization to effectively draw ions across the interface so that the PV-SFO conductive filaments (CFs) can be ruptured in absence of an external field.
View Article and Find Full Text PDFChempluschem
January 2025
Izmir University of Economics: Izmir Ekonomi Universitesi, Department of Mechanical Engineering, Sakarya Cad. No: 156, 35330, Izmir, TURKEY.
Accurate determination of dielectric properties and surface characteristics of two-dimensional (2D) perovskite nanosheets, produced by chemical exfoliation of layered perovskites, is often hindered by exfoliation agent residues such as tetrabutylammonium (TBA). This study investigates the effect of ultraviolet (UV) light exposure duration on the removal of TBA residues from 2D Ca2NaNb4O13- nanosheets deposited on silicon substrates via Langmuir-Blodgett method using atomic force microscopy (AFM). Nanoscale adhesion forces between silicon AFM tips and nanofilms exposed to UV light for 3, 12, 18, and 24 hours were measured.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Department of Mechanical and Energy Engineering, 1088 Xueyuan Blvd, Nanshan District, 518055, Shenzhen, CHINA.
The escape of organic cations over time from defective perovskite interface leads to non-stoichiometric terminals, significantly affecting the stability of perovskite solar cells (PSCs). How to stabilize the interface composition under environmental stress remains a grand challenge. To address this issue, we utilize thiol-functionalized particles as a "seed" and conduct in situ polymerization of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFMA) as a "root" at the bottom of the perovskite layer.
View Article and Find Full Text PDFNanomicro Lett
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Microelectronics, Jiangsu University Zhenjiang Jiangsu 212013 China
Lead halide perovskite heterojunctions have been considered as important building blocks for fabricating high-performance photodetectors (PDs). However, the interfacial defects induced non-radiative recombination and interfacial energy-level misalignment induced ineffective carrier transport severely limit the performance of photodetection of resulting devices. Herein, interfacial engineering with a spin-coating procedure has been studied to improve the photodetection performance of CHNHPbI/SnO heterojunction PDs, which were fabricated by sputtering a SnO thin film on ITO glass followed by spin-coating a CHNHPbI thin film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!