Understanding the structure and function of nucleic acids in their native environment is crucial to structural biology and one focus of in-cell NMR spectroscopy. Many challenges hamper in-cell NMR in human cell lines, e.g. sample decay through cell death and RNA degradation. The resulting low signal intensities and broad line widths limit the use of more complex NMR experiments, reducing the possible structural and dynamic information that can be extracted. Here, we optimize the detection of imino proton signals, indicators of base-pairing and therefore secondary structure, of a double-stranded DNA oligonucleotide in HeLa cells, using selective excitation. We demonstrate the reproducible quantification of in-cell selective longitudinal relaxation times (selT), which are reduced compared to the in vitro environment, as a result of interactions with the complex cellular environment. By measuring the intracellular selT we optimize the existing proton pulse sequences, and shorten measurement time whilst enhancing the signal gained per unit of time. This exemplifies an advantage of selective excitation over conventional methods like jump-return water suppression for in-cell NMR. Furthermore, important experimental controls are discussed, including intracellular quantification, supernatant control measurements, as well as the processing of lowly concentrated in-cell NMR samples. We expect that robust and fast in-cell NMR experiments of nucleic acids will facilitate the study of structure and dynamics and reveal their functional correlation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614993 | PMC |
http://dx.doi.org/10.1007/s10858-024-00448-5 | DOI Listing |
Int J Biol Macromol
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; Gansu Innovation Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China. Electronic address:
The present study aims to characterize the structural features of a natural polysaccharide called PAP-1b extracted from the roots of Potentilla anserina L. and to evaluate its antioxidant activity. Structural characterization indicated that PAP-1b with a molecular weight of 1.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.
View Article and Find Full Text PDFMolecules
December 2024
"C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Splaiul Independentei 202B, 060023 Bucharest, Romania.
Azulene-1,3-bis(semicarbazone), , and azulene-1,3-bis(thiosemicarbazone), , were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds and were identified by high-resolution mass spectrometry and characterized by IR, H-NMR, C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a -closed conformation, with both arms oriented in the same direction and adopting an configuration with respect to the imine linkages.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings.
View Article and Find Full Text PDFMolecules
December 2024
High & New Technology Research Center of Henan Academy of Sciences, No. 56 Hongzhuan Road, Zhengzhou 450002, China.
A series of colorful binuclear Schiff bases derived from the different diamine bridges including 1,2- ethylenediamine (bis-Et-SA, bis-Et-4-NEt, bis-Et-5-NO, bis-Et-Naph), 1,2-phenylenediamine (bis-Ph-SA, bis-Ph-4-NEt, bis-Ph-5-NO, bis-Ph-Naph), dicyano-1,2-ethenediamine (bis-CN-SA, bis-CN-4-NEt, bis-CN-5-NO, bis-CN-Naph) have been designed and prepared. The optical properties of these binuclear Schiff base ligands were fully determined by UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, and time-dependent-density functional theory (TD-DFT) calculations. The inclusion of D-A systems and/or π-extended systems in these binuclear Schiff base ligands not only enables adjustable RGB light absorption and emission spectra (300~700 nm) but also yields high fluorescence quantum efficiencies of up to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!