Propanotrophs are a focus of interest because of their ability to degrade numerous environmental contaminants. To explore the phylogeny of microorganisms containing the propane monooxygenase gene cluster (prmABCD), NCBI bacterial genomes and publicly available soil associated metagenomes (from soils, rhizospheres, tree roots) were both examined. Nucleic acid sequences were collected only if all four subunits were located together, were of the expected length and were annotated as propane monooxygenase subunits. In the bacterial genomes, this resulted in data collection only from the phyla Actinomycetota and Pseudomonadota. For the soil associated metagenomes, reads from four studies were subject to quality control, assembly and annotation. Following this, the propane monooxygenase subunit nucleic acid sequences were collected and aligned to the collected bacterial sequences. In total, forty-two propane monooxygenase gene clusters were annotated from the soil associated metagenomes. The majority aligned closely to those from the Actinomycetota, followed by the Alphaproteobacteria, then the Betaproteobacteria. Actinomycetota aligning propane monooxygenase sequences were obtained from all four datasets and most closely aligned to the genera Kribbella and Amycolatopsis. Alphaproteobacteria aligning sequences largely originated from metagenomes associated with miscanthus and switchgrass rhizospheres and primarily aligned with the genera Bradyrhizobium, Acidiphilium and unclassified Rhizobiales. Betaproteobacteria aligning sequences were obtained from only the Red Oak root metagenomes and primarily aligned with the genera Paraburkholderia, Burkholderia and Caballeronia. Interestingly, sequences from the environmental metagenomes were not closely aligned to those from well-studied propanotrophs, such as Mycobacterium and Rhodococcus. Overall, the study highlights the previously unreported diversity of putative propanotrophs in environmental samples. The common occurrence of propane monooxygenase gene clusters has implications for their potential use for contaminant biodegradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-024-03829-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!