Microbial life forms are among the most ubiquitous on Earth, yet many remain understudied in Caribbean estuaries. We report on the prokaryote community composition of the Urabá Estuary in the Colombian Caribbean using 16S rRNA gene-transcript sequencing. We also assessed potential functional diversity through 38 metabolic traits inferred from 16S rRNA gene data. Water samples were collected from six sampling stations at two depths with contrasting light-penetration conditions along an approximately 100 km transect in the Gulf of Urabá in December 2019. Non-metric multidimensional scaling analysis grouped the samples into two distinct clusters along the transect and between depths. The primary variables influencing the prokaryote community composition were the sampling station, depth, salinity, and dissolved oxygen levels. Twenty percent of genera (i.e., 58 out 285) account for 95% of the differences between groups along the transect and among depths. All of the 38 metabolic traits studied showed some significant relationship with the tested environmental variables, especially salinity and except with temperature. Another non-metric multidimensional scaling analysis, based on community-weighted mean of traits, also grouped the samples in two clusters along the transect and over depth. Biodiversity facets, such as richness, evenness, and redundancy, indicated that environmental variations-stemming from river discharges-introduce an imbalance in functional diversity between surface prokaryote communities closer to the estuary's head and bottom communities closer to the ocean. Our research broadens the use of 16S rRNA gene transcripts beyond mere taxonomic assignments, furthering the field of trait-based prokaryote community ecology in transitional aquatic ecosystems.IMPORTANCEThe resilience of a dynamic ecosystem is directly tied to the ability of its microbes to navigate environmental gradients. This study delves into the changes in prokaryote community composition and functional diversity within the Urabá Estuary (Colombian Caribbean) for the first time. We integrate data from 16S rRNA gene transcripts (taxonomic and functional) with environmental variability to gain an understanding of this under-researched ecosystem using a multi-faceted macroecological framework. We found that significant shifts in prokaryote composition and in primary changes in functional diversity were influenced by physical-chemical fluctuations across the estuary's environmental gradient. Furthermore, we identified a potential disparity in functional diversity. Near-surface communities closer to the estuary's head exhibited differences compared to deeper communities situated farther away. Our research serves as a roadmap for posing new inquiries about the potential functional diversity of prokaryote communities in highly dynamic ecosystems, pushing forward the domain of multi-trait-based prokaryote community ecology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448197 | PMC |
http://dx.doi.org/10.1128/spectrum.03886-23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!