Geminiviruses infect numerous crops and cause extensive agricultural losses worldwide. During viral infection, geminiviral C4/AC4 proteins relocate from the plasma membrane to chloroplasts, where they inhibit the production of host defense signaling molecules. However, mechanisms whereby C4/AC4 proteins are transported to chloroplasts are unknown. We report here that tomato (Solanum lycopersicum) COAT PROTEIN COMPLEX I (COPI) components play a critical role in redistributing Tomato yellow leaf curl virus C4 protein to chloroplasts via an interaction between the C4 and β subunit of COPI. Coexpression of both proteins promotes the enrichment of C4 in chloroplasts that is blocked by a COPI inhibitor. Overexpressing or downregulating gene expression of COPI components promotes or inhibits the viral infection, respectively, suggesting a proviral role of COPI components. COPI components play similar roles in C4/AC4 transport and infections of two other geminiviruses: Beet curly top virus and East African cassava mosaic virus. Our results reveal an unconventional role of COPI components in protein trafficking to chloroplasts during geminivirus infection and suggest a broad-spectrum antiviral strategy in controlling geminivirus infections in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiae436 | DOI Listing |
JACC Heart Fail
January 2025
Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.
Data from large-scale, randomized, controlled trials demonstrate that contemporary treatments for heart failure (HF) can substantially improve morbidity and mortality. Despite this, observed outcomes for patients living with HF are poor, and they have not improved over time. The are many potential reasons for this important problem, but inadequate use of optimal medical therapy for patients with HF, an important component of guideline-directed medical therapy, in routine practice is a principal and modifiable contributor.
View Article and Find Full Text PDFSports Med Open
December 2024
School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia.
The aponeurosis is a large fibrous connective tissue structure within and surrounding skeletal muscle and is a critical component of the muscle-tendon unit (MTU). Due to the lack of consensus on terminology and the heterogeneous nature of the aponeurosis between MTUs, there are several questions that remain unanswered. For example, the aponeurosis is often conflated with the free tendon rather than being considered an independent structure.
View Article and Find Full Text PDFmBio
January 2025
Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan.
Am J Biol Anthropol
November 2024
Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA.
Objectives: Genetic studies of contemporary Puerto Ricans reflect a demographic history characterized by admixture between Indigenous American, African, and European peoples. While previous studies provide genetic perspectives on the general Puerto Rican population, less is known about the island's sub-populations, specifically Afro-Puerto Ricans.
Materials And Methods: In this study, the genetic ancestry of Afro-Puerto Ricans is characterized and compared to other Caribbean populations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!