In this case report, the authors summarize their experience of using hydrogel combined with alginate dressings in the wound care of a patient with grade 4 acute radiation dermatitis. With the combination of hydrogel and alginate dressings, the authors achieved autolytic debridement of the wound and created a moist healing environment to facilitate wound closure. Hydrogel helps the dressing adhere better to the wound bed, ensuring that it does not easily detach during the wound healing process. It also eliminates the need for traditional adhesive tapes for fixation, thus avoiding damage to the fragile skin in the radiation field.The wound gradually decreased in size from an area of 10 × 12 cm, and exudate decreased continuously. The wound completely healed in 20 days with a total of 17 dressing changes. As the wound gradually healed, the patient's psychological burden decreased and comfort level increased. The patient expressed satisfaction and hope for the gradual healing of the wound.Thus, the treatment of severe acute radiation dermatitis with hydrogel combined with alginate dressings yields remarkable results, aligning the noninvasive, low-adhesive, absorbent, conformable, and comfortable attributes of optimized wound care. This experience provides a practical foundation for wound management in acute radiation dermatitis and supports clinical application and promotion of the approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ASW.0000000000000198 | DOI Listing |
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey. Electronic address:
Wound care presents an imposed financial burden for healthcare organizations, prompting the need for novel and cost-efficient dressings. In this study, we address this challenge by introducing a novel approach to fabricate antibacterial alginate-based fibrous materials using a combination of wet spinning and the wet-laying method, which offer advantages including structural and functional properties such as breathability, nontoxicity, biocompatibility, and cost-effectiveness. The wet spinning method was employed to develop porous and non-porous Ca-alginate fibers with diameters of 100 ± 4.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:
Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania.
With the growing interest in nanofibers and the urgent need to address environmental concerns associated with plastic waste, there is an increasing focus on using recycled materials to develop advanced healthcare solutions. This study explores the potential of recycled poly(ethylene terephthalate) (PET) nanofibers, functionalized with copper-enhanced alginate, for applications in wound dressings. Nanofibers with desirable antimicrobial properties were developed using chemical recycling and electrospinning techniques, offering a sustainable and effective option for managing wound infections and promoting healing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biomedical Engineering, Istanbul AREL University, 34537 Istanbul, Turkey.
Three-dimensional (3D) printing is a rapidly evolving technology. This study focuses on developing biopolymeric inks tailored for Three-dimensional (3D) printing applications, specifically to produce 3D-printed materials for wound dressing. Humic Acid (HA) was incorporated into the ink formulations due to its anti-inflammatory properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!