We demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined nucleosome arrays) or in antiphase (leading to fuzzy nucleosome architectures). We found that the first (+1) and the last (-last) nucleosomes are contiguous to regions signaled by transcription factor binding sites and unusual DNA physical properties that hinder nucleosome wrapping. Based on these analyses, we developed a method that combines Machine Learning and signal transmission theory able to predict the basal locations of the nucleosomes with an accuracy similar to that of experimental MNase-seq based methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417389 | PMC |
http://dx.doi.org/10.1093/nar/gkae689 | DOI Listing |
PLoS One
January 2025
School of Information and Technology, Wenzhou Business College, Wenzhou, Zhejiang, China.
Liver cancer is the sixth most frequent malignancy and the fourth major cause of deaths worldwide. The current treatments are only effective in early stages of cancer. To overcome the therapeutic challenges and exploration of immunotherapeutic options, broad spectral therapeutic vaccines could have significant impact.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
Machine learning (ML) methods offer a promising route to the construction of universal molecular potentials with high accuracy and low computational cost. It is becoming evident that integrating physical principles into these models, or utilizing them in a Δ-ML scheme, significantly enhances their robustness and transferability. This paper introduces PM6-ML, a Δ-ML method that synergizes the semiempirical quantum-mechanical (SQM) method PM6 with a state-of-the-art ML potential applied as a universal correction.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Liaoning Key Laboratory of Manufacturing System and Logistics Optimization, Shenyang 110819, China.
Artificial intelligence technology has introduced a new research paradigm into the fields of quantum chemistry and materials science, leading to numerous studies that utilize machine learning methods to predict molecular properties. We contend that an exemplary deep learning model should not only achieve high-precision predictions of molecular properties but also incorporate guidance from physical mechanisms. Here, we propose a framework for predicting molecular properties based on data-driven electron density images, referred to as D3-ImgNet.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland.
Importance: Digital health in biomedical research and its expanding list of potential clinical applications are rapidly evolving. A combination of new digital health technologies (DHTs), novel uses of existing DHTs through artificial intelligence- and machine learning-based algorithms, and improved integration and analysis of data from multiple sources has enabled broader use and delivery of these tools for research and health care purposes. The aim of this study was to assess the growth and overall trajectory of DHT funding through a National Institutes of Health (NIH)-wide grant portfolio analysis.
View Article and Find Full Text PDFClin Exp Med
January 2025
Pediatrics, Western University, London, ON, Canada.
Sepsis is a major cause of morbidity and mortality worldwide. Among the various types of end-organ damage associated with sepsis, hepatic injury is linked to significantly higher mortality rates compared to dysfunction in other organ systems. This study aimed to investigate potential biomarkers of hepatic injury in sepsis patients through a multi-center, case-control approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!