The study of energy correlations in catalytic reactions plays a pivotal role in guiding catalyst development. This paper focuses on the investigation of energy linear relationships in methanol synthesis from CO hydrogenation on copper surfaces, systematically exploring energy parameters including activation energy, reaction energy and adsorption energy. A comparative analysis of the adsorption characteristics and reaction parameters in the formate, formic acid and reverse water-gas shift pathways is conducted, laying the data foundation for subsequent linear studies. Then, descriptors are extracted from electronic, energetic and structural information and further integrated using the sure independence screening and sparsifying operator (SISSO) method to establish an energy description paradigm characterized by interpretability and accuracy. Additionally, reactions are further categorized based on hydrogenation types to mitigate the adverse effects of redundant data points. Finally, the summarized reaction descriptors are extended to Cu-based alloy systems to highlight the rationality and transferability of the developed descriptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp01969e | DOI Listing |
Injury
January 2025
Professor of Orthopedics - Section Head Trauma & Orthopaedic Surgery, School of Medicine University of Leeds, UK.
The term "fragility fractures of the pelvis" refers to the disruptions of the pelvic ring that are caused by low energy injuries (such as low-level falls or falls from the standing position) in the elderly population (age over 65 years) in the absence of metastatic bone disease. These fractures are increasing in numbers, due to the aging population, particularly in the developed countries, causing significant morbidity and mortality [1]. Although some fracture patterns are stable enough requiring only conservative treatment, other fracture types can cause significant pelvic instability, demanding a more insistent management protocol.
View Article and Find Full Text PDFNanotechnology
January 2025
Qingdao University, Ningxia Road 308, Qingdao, Shandong, 266071, CHINA.
Graphitic carbon nitride (g-C3N4) has gained significant attention as a promising nonmetallic semiconductor photocatalyst due to its photochemical stability, favorable electronic properties, and efficient light absorption. Nevertheless, its practical applications are hindered by limitations such as low specific surface area, rapid recombination of photogenerated charge carriers, poor electrical conductivity, and restricted photo-response ranges. This review explores recent advancements in the synthesis, modification and application of g-C3N4 and its nanocomposites with a focus on addressing these challenges.
View Article and Find Full Text PDFNanotechnology
January 2025
Technische Universität München School of Computation Information and Technology, Hans-Piloty-Strasse 1, 85748 Garching bei Muenchen, Munich, 85748, GERMANY.
We investigate the effect of focused-ion-beam (FIB) irradiation on spin waves with sub-micron wavelengths in Yttrium-Iron-Garnet (YIG) films. Time-resolved scanning transmission X-ray (TR-STXM) microscopy was used to image the spin waves in irradiated regions and deduce corresponding changes in the magnetic parameters of the film. We find that the changes of Gairradiation can be understood by assuming a few percent change in the effective magnetizationof the film due to a trade-off between changes in anisotropy and effective film thickness.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
Mn-doped luminescent materials play a significant role in a variety of fields, including modern lighting, displays, and imaging. Mn exhibits a broad and adjustable emission, hinging on the local environment of the crystal field and the interaction of the 3d electrons. However, it is still a challenge to realize the precise control of the emission of Mn ions due to site-prior occupation in a specific lattice.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Lattice distortion and disorder in the chemical environment of magnetic atoms within high-entropy compounds present intriguing issues in the modulation of magnetic functional compounds. However, the complexity inherent in high-entropy disordered systems has resulted in a relative scarcity of comprehensive investigations exploring the magnetic functional mechanisms of these alloys. Herein, we investigate the magnetocaloric effect (MCE) of the high-entropy intermetallic compound GdTbDyHoErCo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!