Root-secreted (-)-loliolide mediates chemical defense in rice and wheat against pests.

Pest Manag Sci

Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.

Published: August 2024

Background: Plant chemical defense can be elicited by signaling chemicals. As yet, the elicitation is mainly known from volatile aboveground signals. Root-secreted belowground signals and their underlying mechanisms are largely unknown. This study examined a root-secreted signaling (-)-loliolide to trigger chemical defense in rice and wheat against pests by means of cocultivation and incubation experiments.

Results: Wild-type Arabidopsis (WT) and its root exudates with (-)-loliolide induced the production of defensive metabolites of rice and wheat and reduced the performance of weeds, pathogens and herbivores, while a carotenoid-deficient mutant (szl1-1) and its root exudates without (-)-loliolide had no similar effects. However, the induction and reduction occurred in the szl1-1 root exudates by (-)-loliolide supplementation with the level equal to that of WT. RNA-sequencing analysis revealed a significant change in the transcript level of defense-related genes in rice exposure to (-)-loliolide. Furthermore, (-)-loliolide enhanced rice resistance against Rhizoctonia solani through changing reactive oxygen species (ROS) system, and mediating jasmonic acid, salicylic acid and abscisic acid biosynthesis.

Conclusion: Root-secreted signaling (-)-loliolide can trigger chemical defense in rice and wheat against their pests. Such perception-dependent chemical defenses provide an intriguing possibility for ecological pest management to increase crop productivity and sustainability. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.8378DOI Listing

Publication Analysis

Top Keywords

chemical defense
16
rice wheat
16
defense rice
12
wheat pests
12
root exudates
12
exudates --loliolide
12
root-secreted signaling
8
signaling --loliolide
8
--loliolide trigger
8
trigger chemical
8

Similar Publications

Background: The cotton-melon aphid, Aphis gossypii Glover, is a polyphagous pest damaging plants across over 100 families. It has multiple host-specialized lineages, including one colonizing Malvaceae (MA) and one colonizing Cucurbitaceae (CU). The mechanisms underlying these host relationships remain unknown.

View Article and Find Full Text PDF

Multiomics Analysis Reveals Key Targeted Metabolic Pathways Underlying the Hormesis and Detrimental Effects of Enrofloxacin on Rice Plants.

J Agric Food Chem

January 2025

Institute of Virology and Biotechnology, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.

Fluoroquinolone antibiotic enrofloxacin (ENR) is frequently detected in agricultural environments. The hormesis and detrimental effects of ENR on crops have been extensively observed. However, the molecular mechanisms underlying these crops' responses to ENR remain limited.

View Article and Find Full Text PDF

Drug targeting strategies, such as peptide-drug conjugates (PDCs), have arisen to combat the issue of off-target toxicity that is commonly associated with chemotherapeutic small molecule drugs. Here we investigated the ability of PDCs comprising a human protein-derived cell-penetrating peptide-platelet factor 4-derived internalization peptide (PDIP)-as a targeting strategy to improve the selectivity of camptothecin (CPT), a topoisomerase I inhibitor that suffers from off-target toxicity. The intranuclear target of CPT allowed exploration of PDC design features required for optimal potency.

View Article and Find Full Text PDF

Fast 3D printing of fine, continuous, and soft fibers via embedded solvent exchange.

Nat Commun

January 2025

Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.

Nature uses fibrous structures for sensing and structural functions as observed in hairs, whiskers, stereocilia, spider silks, and hagfish slime thread skeins. Here, we demonstrate multi-nozzle printing of 3D hair arrays having freeform trajectories at a very high rate, with fiber diameters as fine as 1.5 µm, continuous lengths reaching tens of centimeters, and a wide range of materials with elastic moduli from 5 MPa to 3500 MPa.

View Article and Find Full Text PDF

Enzyme engineering is limited by the challenge of rapidly generating and using large datasets of sequence-function relationships for predictive design. To address this challenge, we develop a machine learning (ML)-guided platform that integrates cell-free DNA assembly, cell-free gene expression, and functional assays to rapidly map fitness landscapes across protein sequence space and optimize enzymes for multiple, distinct chemical reactions. We apply this platform to engineer amide synthetases by evaluating substrate preference for 1217 enzyme variants in 10,953 unique reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!