AI Article Synopsis

  • The study investigates the effectiveness of Ma Xing Shi Gan Decoction (MXSG), a traditional Chinese medicine, in treating influenza virus-induced pneumonia by focusing on how it influences gut microbiota and lung glycolysis.
  • Using a mouse model, researchers analyzed inflammatory markers, changes in gut bacteria, and metabolic processes in lung tissue after MXSG treatment.
  • Results showed that MXSG reduced harmful gut bacteria, decreased inflammation, suppressed glycolysis in lung tissues, and altered macrophage populations, indicating its potential therapeutic mechanisms in pneumonia management.

Article Abstract

Background: Influenza virus is one of the most common pathogens that cause viral pneumonia. During pneumonia, host immune inflammation regulation involves microbiota in the intestine and glycolysis in the lung tissues. In the clinical guidelines for pneumonia treatment in China, Ma Xing Shi Gan Decoction (MXSG) is a commonly prescribed traditional Chinese medicine formulation with significant efficacy, however, it remains unclear whether its specific mechanism of action is related to the regulation of intestinal microbiota structure and lung tissue glycolysis.

Objective: This study aimed to investigate the mechanism of action of MXSG in an animal model of influenza virus-induced pneumonia. Specifically, we aimed to elucidate how MXSG modulates intestinal microbiota structure and lung tissue glycolysis to exert its therapeutic effects on pneumonia.

Methods: We established a mouse model of influenza virus-induced pneumoni, and treated with MXSG. We observed changes in inflammatory cytokine levels and conducted 16S rRNA gene sequencing to assess the intestinal microbiota structure and function. Additionally, targeted metabolomics was performed to analyze lung tissue glycolytic metabolites, and Western blot and enzyme-linked immunosorbent assays were performed to assess glycolysis-related enzymes, lipopolysaccharides (LPSs), HIF-1a, and macrophage surface markers. Correlation analysis was conducted between the LPS and omics results to elucidate the relationship between intestinal microbiota and lung tissue glycolysis in pneumonia animals under the intervention of Ma Xing Shi Gan Decoction.

Results: MXSG reduced the abundance of Gram-negative bacteria in the intestines, such as Proteobacteria and , leading to reduced LPS content in the serum and lungs. This intervention also suppressed HIF-1a activity and lung tissue glycolysis metabolism, decreased the number of M1-type macrophages, and increased the number of M2-type macrophages, effectively alleviating lung damage caused by influenza virus-induced pneumonia.

Conclusion: MXSG can alleviate glycolysis in lung tissue, suppress M1-type macrophage activation, promote M2-type macrophage activation, and mitigate inflammation in lung tissue. This therapeutic effect appears to be mediated by modulating gut microbiota and reducing endogenous LPS production in the intestines. This study demonstrates the therapeutic effects of MXSG on pneumonia and explores its potential mechanism, thus providing data support for the use of traditional Chinese medicine in the treatment of respiratory infectious diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331264PMC
http://dx.doi.org/10.3389/fphar.2024.1404021DOI Listing

Publication Analysis

Top Keywords

lung tissue
28
intestinal microbiota
20
influenza virus-induced
16
xing shi
12
shi gan
12
microbiota structure
12
tissue glycolysis
12
lung
9
gan decoction
8
virus-induced pneumonia
8

Similar Publications

Background: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses.

Methods: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days.

Results: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life.

View Article and Find Full Text PDF

Dynamic Metabolic Characterization of Lung Tissues in Rats Exposed to Whole-Thorax Irradiation Based on GC-MS.

Biomed Chromatogr

January 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.

An animal model of radiation-induced lung injury (RILI) was established using female rats given sublethal whole-thorax X-ray irradiation (15 Gy) at a dose rate of 2.7 Gy/min. The rats were studied for up to day 45 and compared with sham-irradiated controls.

View Article and Find Full Text PDF

Objective:  Septic acute lung injury (ALI) is a common complication of sepsis with high morbidity and mortality but lacks specific treatment. This study aimed to elucidate the role of circular RNA TLK1 (circTLK1) in neonatal septic ALI.

Study Design:  Murine cecal slurry was used to induce neonatal sepsis-induced ALI model in vivo.

View Article and Find Full Text PDF

Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model.

Int Immunopharmacol

December 2024

Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:

Background: Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects.

View Article and Find Full Text PDF

ADSCs-derived exosomes suppress macrophage ferroptosis via the SIRT1/NRF2 signaling axis to alleviate acute lung injury in sepsis.

Int Immunopharmacol

December 2024

Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. Electronic address:

Acute lung injury being one of the earliest and most severe complications during sepsis and macrophages play a key role in this process. To investigate the regulatory effects and potential mechanisms of adipose mesenchymal stem cell derived-exosomes (ADSC-exo) on macrophages and septic mice, ADSCs-exo was administrated to both LPS-induced macrophage and cecal ligation and puncture (CLP) induced sepsis mice. ADSCs-exo was confirmed to inhibit M1 polarization of macrophages and to reduce excessive inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!