Excess fluoride in aqueous solutions can significantly affect dental and bone health. This study used two methods to prepare hydroxyapatite to remove fluoride ions from water. The experiments showed that the adsorption capacity and removal rate of hydroxyapatite (Xq-HAP) prepared by the novel method were higher than for the hydroxyapatite (Yt-HAP) prepared by the conventional method. The maximum fluoride ion trapping capacity of Xq-HAP could reach 29.04 mg g under the conditions of pH = 5 and an F ion concentration of 10 mg L. The materials were characterized by SEM, XRD, BET, XPS, and FTIR. An investigation was conducted to examine the impact of contact time, adsorbent dosage, fluoride concentration, solution pH, temperature, and several other parameters on the removal of fluoride. Adsorption equilibrium was reached in approximately 3 h at an initial fluoride concentration of 10 mg L. It can be seen that the adsorbent has a faster ability to trap fluoride ions. The adsorption kinetics and Langmuir isotherm indicated that fluoride ion adsorption is a monolayer chemisorption process. Further characterization and kinetic studies indicated that the removal mechanism involves ion exchange, electrostatic interactions, and complexation. After five adsorption cycles, the adsorption capacity reaches 23 mg g.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332186 | PMC |
http://dx.doi.org/10.1039/d4ra02147a | DOI Listing |
Biomed Phys Eng Express
January 2025
Brain Health Imaging Centre, Centre for Addiction and Mental Health, B68-250 College St, Toronto, Ontario, M5T 1R8, CANADA.
Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Department Chemie, Ludwig-Maximilians Universität, Butenandtstrasse 5-13 (Haus D), D-81377 München, Germany.
Acyl fluorides and acyl cations represent typical reactive intermediates in organic reactions, such as Friedel-Crafts acylation. However, the comparatively stable phenyl-substituted compounds have not been fully characterized yet, offering a promising backbone. Attempts to isolate the benzoacylium cation have only been carried out starting from the acyl chloride with weaker chloride-based Lewis acids.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
A transparent fluoroborosilicate glass ceramic was designed for the controllable precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of active ions. Through the introduction of BO into fluorosilicate glass, the melting temperature was decreased from 1400 to 1050 °C, and the abnormal crystallization in the fabrication process of fluorosilicate glass was avoided. More importantly, the controlled crystallizations of KZnF and KYbF in fluoroborosilicate glass ceramics enhanced the emission of Mn and Mn-Yb dimers by 6.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
() is a filamentous fungus that causes invasive aspergillosis in immunocompromised individuals. Regulating fungal growth is crucial for preventing disease development. This study found that deleting the guanine nucleotide exchange factor gene led to slower growth and reduced the fungal burden and mortality of infected mice.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
Electro-conductive membranes coupled with a low-voltage electric field can enhance pollutant removal and mitigate membrane fouling, demonstrating significant potential for electrified wastewater treatment. However, efficient fabrication of conductive membranes poses challenges. An in situ oxidative polymerization approach was applied to prepare PVDF-based conductive membranes (PVDF-CMs) and response surface methodology (RSM) was adopted to optimize modification conditions enhancing membrane performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!