Matrix protein 2 (M2) and matrix protein 1 (M1) of the influenza B virus are two important proteins, and the interactions between BM2 and BM1 play an important role in the process of virus assembly and replication. However, the interaction details between BM2 and BM1 are still unclear at the atomic level. Here, we constructed the BM2BM1 complex system using homology modelling and molecular docking methods. Molecular dynamics (MD) simulations were used to illustrate the binding mechanism between BM2 and BM1. The results identify that the eight polar residues (E88, E89, H119, E94, R101, K102, R105, and E104) play an important role in stabilizing the binding through the formation of hydrogen bond networks and salt-bridge interactions at the binding interface. Furthermore, based on the simulation results and the experimental facts, the mutation experiments were designed to verify the influence of the mutation of residues both within and outside the effector domain. The mutations directly or indirectly disrupt interactions between polar residues, thus affecting viral assembly and replication. The results could help us understand the details of the interactions between BM2 and BM1 and provide useful information for the anti-influenza drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp01936aDOI Listing

Publication Analysis

Top Keywords

bm2 bm1
20
binding mechanism
8
mechanism bm2
8
molecular dynamics
8
matrix protein
8
interactions bm2
8
play role
8
assembly replication
8
polar residues
8
bm2
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!