We experimentally clarify the interaction of acoustic pressure and heat release rate fluctuations during a transition to high-frequency combustion instability in a model rocket engine combustor. The dynamical state of acoustic pressure fluctuations undergoes a transition from high-dimensional chaotic oscillations to strongly correlated limit cycle oscillations. The coherent structure in the heat release rate field emerges with the initiation of weakly correlated limit cycle oscillations. The effect of the heat release rate on acoustic pressure fluctuations predominates during high-dimensional chaotic oscillations. In contrast, the effect of acoustic pressure on the heat release rate fluctuations markedly increases during the correlated limit cycle oscillations. These are reasonably shown by an ordinal pattern-based analysis involving the concepts of information theory, synchronization, and complex networks.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.014202DOI Listing

Publication Analysis

Top Keywords

acoustic pressure
20
heat release
20
release rate
20
pressure heat
12
rate fluctuations
12
correlated limit
12
limit cycle
12
cycle oscillations
12
interaction acoustic
8
model rocket
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!