Blue phases (BPs) consist of three-dimensional self-assembled structures formed by a double-twisted columnar arrangement of liquid crystal molecules. Although their unique optical and structural properties render BPs particularly useful for applications such as liquid crystal displays, BPs typically appear in a narrow temperature range between the isotropic and nematic phases. This thermodynamic instability impedes their practical applicability. However, the simulations we present here showed that, in a quasi-one-dimensional system confined to nanospace, a phase equivalent to the BP appears and persists between the nematic and smectic phases. Confinement to a nanotube (NT) with a relatively small radius enables the BP to be maintained over a wide temperature range, whereas for an NT with a relatively larger radius, the BP appears only in a very narrow temperature range between the aforementioned phases. We additionally showed that the pitch of the BP is dependent on and can be controlled by adjusting the radius of the NTs. This finding has significant implications for the potential application of these materials in fields such as photonics and chiral separation technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.014701DOI Listing

Publication Analysis

Top Keywords

liquid crystal
12
temperature range
12
narrow temperature
8
coarse-grained molecular
4
molecular simulation
4
simulation liquid
4
crystal molecular
4
molecular pitch
4
pitch structure
4
structure cylindrical
4

Similar Publications

We report an experimental study on how topological defects induced by cylindrical air inclusions in the ferroelectric nematic liquid crystal RM734 are influenced by ionic doping, including an ionic surfactant and ionic polymer. Our results show that subtle differences in molecular structure can lead to distinct surface alignments and topological defects. The ionic surfactant induces a planar alignment, with two -1/2 line defects adhering to the cylindrical bubble surface.

View Article and Find Full Text PDF

The past decade witnessed a surge in discoveries where biological systems, such as bacteria or living cells, inherently portray active polar or nematic behavior: they prefer to align with each other and form local order during migration. Although the underlying mechanisms remain unclear, utilizing their physical properties to achieve controllable cell-layer transport will be of fundamental importance. In this study, the ratchet effect is harnessed to control the collective motion of neural progenitor cells (NPCs) in vitro.

View Article and Find Full Text PDF

Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments.

View Article and Find Full Text PDF

Cryopreservation of brain cell structure: a review.

Free Neuropathol

January 2024

Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Cryopreservation, the preservation of tissues at subzero temperatures, is a mainstay of brain banking that allows for the storage of brain tissue without the use of chemical fixatives. This is particularly important for molecular studies that are incompatible with tissue fixation. However, brain tissue is vulnerable to various forms of damage during the cryopreservation process, in particular due to the phase transition of water from a liquid to a solid state with the formation of ice crystals, which can disrupt cellular morphology.

View Article and Find Full Text PDF

Electrons in topological flat bands can form new topological states driven by correlation effects. The pentalayer rhombohedral graphene/hexagonal boron nitride (hBN) moiré superlattice was shown to host fractional quantum anomalous Hall effect (FQAHE) at approximately 400 mK (ref. ), triggering discussions around the underlying mechanism and role of moiré effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!