The highly and slightly condensed forms of chromatin, heterochromatin and euchromatin, respectively, segregate in the cell nucleus. Heterochromatin is more abundant in the nucleus periphery. Here we study the mechanism of heterochromatin segregation by modeling interphase chromosomes as diblock ring copolymers confined in a rigid spherical shell using molecular dynamics simulations. In our model, heterochromatin and euchromatin are distinguished by their bending stiffnesses only, while an interaction potential between the spherical shell and chromatin is used to model lamin-associated proteins. Our simulations indicate that in the absence of attractive interactions between the nuclear shell and the chromatin, most heterochromatin segregates towards the nuclear interior due to the depletion of less flexible heterochromatin segments from the nuclear periphery. This inverted chromatin distribution,which is opposite to the conventional case with heterochromatin dominating at the periphery, is in accord with experimental observations in rod cells. This "inversion" is also found to be independent of the heterochromatin concentration and chromosome number. The chromatin distribution at the periphery found in vivo can be recovered by further increasing the bending stiffness of heterochromatin segments or by turning on attractive interactions between the nuclear shell and heterochromatin. Our results indicate that the bending stiffness of chromatin could be a contributor to chromosome organization along with differential effects of HP1α-driven phase segregation and of loop extruders and interactions with the nuclear envelope and topological constraints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371272 | PMC |
http://dx.doi.org/10.1103/PhysRevE.110.014403 | DOI Listing |
J Fluoresc
January 2025
Department of Physics, Jnanabharathi, Bangalore University, Bengaluru, 560056, Karnataka, India.
In this report the photophysical property of newly synthesized fluorescein based derivative 2-(5-((2,4-dichlorophenyl)diazenyl)-6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid has studied by spectroscopic and theoretical that is by Density Functional Theory technique. The structural and functional group of the synthesized molecule was confirmed by nuclear magnetic resonance and fourier transform infrared spectroscopy technique, and from the result so far obtained has been confirmed that molecule has a stable structure and confirmed the presence the functional groups present in the sample. The optical properties of the molecule are studied using the spectroscopic technique and it has revealed the solute-solvent interaction behaviour of the molecule and it has been observed that the bathochromic shift was of about 5 nm, from the fluorescence measurement it has revealed that the emission has been observed at green region and from the power spectra it has been confirmed the same.
View Article and Find Full Text PDFJ Sports Sci
January 2025
Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
This study aimed to investigate the effects 24 weeks of supervised exercise training at different intensities on S-Klotho and 25-hydroxyvitamin D plasma levels in young adults. This report was based on a secondary analysis from the ACTIBATE single-center unblinded randomized controlled trial (ClinicalTrials.gov ID: NCT02365129).
View Article and Find Full Text PDFJ Chem Educ
January 2025
University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom (U.K.).
The global nuclear skills shortage requires a comprehensive investment in training at all levels of education. With focus on post-18 and vocational education, there is a lack of resource and awareness for teaching nuclear skills to students between the ages of 11 to 18 years of age. This age group is vital if interest in this industry is to be nurtured and the skills gap is to be addressed.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
Background: Xanthones are dubbed as putative lead-like molecules for cancer drug design and discovery. This study was aimed at the synthesis, characterization, and target fishing of novel xanthone derivatives.
Methods: The products of reactions of xanthydrol with urea, thiourea, and thiosemicarbazide reacted with α-haloketones to prepare the thiazolone compounds.
Hortic Res
January 2025
Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy.
In the context of organic farming, the introduction of a local product to wider markets and an evaluation of storage effects, metabolic and transcriptomic variations in two broccoli rabe genotypes from production cycles of two different years were studied by comparing florets of stored fresh (SF) and packaged (P) for 4 days with those harvested fresh from the field (H). Twenty-five hydrosoluble compounds, including amino acids, carbohydrates, and organic acids, were quantified by untargeted nuclear magnetic resonance (NMR). Principal component analysis produced a neat separation among the three commodity statuses with P being the most divergent and SF closer to H.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!