A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bootstrapping cascaded random matrix models: Correlations in permutations of matrix products. | LitMetric

Bootstrapping cascaded random matrix models: Correlations in permutations of matrix products.

Phys Rev E

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Published: July 2024

Random matrix theory is a useful tool in the study of the physics of multiple scattering systems, often striking a balance between computation speed and physical rigour. Propagation of waves through thick disordered media, as arises, for example, in optical scattering or electron transport, typically necessitates cascading of multiple random matrices drawn from an underlying ensemble for thin media, greatly increasing the computational burden. Here we propose a dual pool based bootstrapping approach to speed up statistical studies of scattering in thick random media. We examine how potential matrix reuse in a pool based approach can impact statistical estimates of population averages. Specifically, we discuss how both bias and additional variance in the sample mean estimator are introduced through bootstrapping. In the diffusive scattering regime, the extra estimator variance is shown to originate from samples in which cascaded transfer matrices are permuted matrix products. Through analysis of the combinatorics and cycle structure of permutations we quantify the resulting correlations. Proofs of several analytic formulas enumerating the frequency with which correlations of different strengths occur are derived. Extension to the ballistic regime is briefly considered.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.015308DOI Listing

Publication Analysis

Top Keywords

random matrix
8
matrix products
8
pool based
8
matrix
5
bootstrapping cascaded
4
random
4
cascaded random
4
matrix models
4
models correlations
4
correlations permutations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!