Nuclear reactor cores achieve sustained fission chain reactions through the so-called "critical state"-a subtle equilibrium between their material properties and their geometries. Observed at macroscopic scales during operations, the resulting stationary neutron field is tainted by a noise term that hinders various fluctuations occurring at smaller scales. These fluctuations are either of a stochastic nature (whenever the core is operated at low power) or related to various perturbations and vibrations within the core, even operated in its power regime. For reasons that are only partially understood using linear noise theory, incidental events have been reported, characterized by an increase of the power noise. Such events of power noise growth, sometimes up to seemingly unbounded levels, have already led in the past to voluntary scramming of reactors. In this paper, we will use a statistical field theory of critical processes to model the effects of neutron power noise. We will show that the evolution of the neutron field in a reactor is intimately connected to the dynamic of surface growths given by the Kardar-Parisi-Zhang equation. Recent numerical results emerging from renormalization-group approaches will be used to calculate a threshold in the amplitude of the reactor noise above which the core enters a new criticality state, and to estimate the critical exponents characterizing this phase transition to rough neutron fields. The theoretical model of nonlinear noise built in this paper from ab initio statistical mechanics principles will be correlated and compared to data of misunderstood reactor noise levels and reactor instabilities and will be shown to provide both qualitative and quantitative insights into this long-standing issue of reactor physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.110.014119 | DOI Listing |
Sensors (Basel)
December 2024
Department of Computer Engineering, Inha University, Incheon 22212, Republic of Korea.
The degradation of clamping force in the core support barrel, which forms the internal structure of a nuclear power plant, has the potential to significantly impact the plant's safety and reliability. Previous studies have concentrated on the detection of clamping force degradation but have been constrained in their ability to identify the precise size and position. This study proposes a novel methodology for diagnosing the size and position of clamping force degradation in core support barrels, combining deep-learning techniques and dynamic time warping (DTW) algorithms.
View Article and Find Full Text PDFTunable diode laser absorption spectroscopy (TDLAS) is used to measure the 6s S-5d6p D absorption line profile of a Ba atomic beam produced in a molecular beam epitaxy (MBE) reactor. Despite the noisy MBE environment, a signal-to-noise ratio up to 100 is obtained thanks to a thorough optimization of the measurement setup. A model that realistically describes this absorption profile is presented, taking into account the angular distribution of atomic concentration in the atomic beam as well as the reactor and setup geometry.
View Article and Find Full Text PDFPhys Rev E
October 2024
Centre for Fluids and Complex Systems, Coventry University, Coventry CV1 2TT, United Kingdom.
The low-to-high confinement (L-H) transition signifies one of the important plasma bifurcations occurring in magnetic confinement plasmas, with vital implications for exploring high-performance regimes in future fusion reactors. In particular, the accurate turbulence statistical description of self-regulation and causal relation among turbulence and shear flows is essential for accessing enhanced plasma performance and advanced operation scenarios. To address this, we provide a nonperturbative theory of the L-H transition by stochastic simulations of a reduced L-H transition model and detailed statistical analysis.
View Article and Find Full Text PDFSensors (Basel)
October 2024
Department of Electrical and Electronic Engineering, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 35349, Republic of Korea.
Leak detection in nuclear reactor coolant systems is crucial for maintaining the safety and operational integrity of nuclear power plants. Traditional leak detection methods, such as acoustic emission sensors and spectroscopy, face challenges in sensitivity, response time, and accurate leak localization, particularly in complex piping systems. In this study, we propose a novel leak detection approach that incorporates a rigid guide tube into the insulation layer surrounding reactor coolant pipes and combines this with an advanced detection criterion based on Frequency Center of Gravity shifts and Signal-to-Noise Ratio analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!