A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a Predictive Model to Determine Appropriate Length of Profile. | LitMetric

Introduction: Musculoskeletal injuries are one of the primary causes of Soldiers' inability to be medically ready, comprising over 80% of such causes. The electronic profile (e-Profile) is the way that musculoskeletal injuries are documented so that commanders will know the type of injury as well as the length of the time that the Soldier will need limited duty. A previous study of e-Profiles in an Army MTF Integrated Pain Management Center showed that the median length of an e-Profile was 30 days. It is in the best interest of the Army to have the Soldier out of the fight the minimum amount of time for recovery to ensure the unit readiness. The goal of this study was to utilize e-Profile data to see if a machine learning model can be developed to determine the appropriate time a Soldier needs to be on profile for a given diagnoses.

Materials And Methods: Institutional Review Board approval was obtained from the USAMRDC (protocol #M-10966). The initial dataset provided to the research team consisted of a single pipe delimited ("|") text file containing 2.9 million rows of e-Profile data. Linear regression, decision trees, and random forests (RFs) were evaluated to see which model would best predict the number of days needed for an e-Profile.

Results: Linear regression had an adjusted R-squared of 0.165. The positive predictive value of decision trees (0-to-30-day range of e-Profiles) was 73.6%, and the negative predictive value (30-90 days) was 60.9% with an area under the receiver operating characteristic curve (AUC) of 0.694 for the model. The positive predictive value of RFs was 85.3% (for the 0-30 range), and the negative predictive value was 58.7% (for the 30-90 range) with an AUC of 0.794. An AUC that approaches 1 indicates a more accurate prediction.

Conclusions: The 3 models (linear regression, decision trees, and RF) studied as part of this project did not predict the days on e-Profile with a high degree of certainty. Future research will focus on adding additional data to the e-Profile dataset in order to improve model accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1093/milmed/usae159DOI Listing

Publication Analysis

Top Keywords

linear regression
12
decision trees
12
determine appropriate
8
musculoskeletal injuries
8
time soldier
8
e-profile data
8
regression decision
8
positive predictive
8
negative predictive
8
e-profile
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!