A flexible and metal-free synthetic approach for synthesizing 2-benzoyl quinazolinones and 2-aryl quinazolinones via molecular iodine-mediated annulative coupling of sulfoxonium ylides with 2-aminobenzamides has been disclosed. The method demonstrates remarkable chemoselectivity and efficiency, leading to high yields of 2-benzoyl quinazolinones and 2-aryl quinazolinones under optimized conditions. The broad substrate scope, scalability, and practical utility were highlighted through diverse applications, including gram-scale reactions and the synthesis of biologically significant compounds such as tryptanthrin and the chemo/biosensor derivative.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c01354DOI Listing

Publication Analysis

Top Keywords

annulative coupling
8
sulfoxonium ylides
8
2-benzoyl quinazolinones
8
quinazolinones 2-aryl
8
2-aryl quinazolinones
8
quinazolinones
5
i-promoted chemoselective
4
chemoselective annulative
4
coupling 2-aminobenzamides
4
2-aminobenzamides sulfoxonium
4

Similar Publications

We present a novel, metal- and additive-free method for the robust synthesis of dihydrofuran-fused naphthalenes and coumarins. This approach utilizes the annulative coupling of sulfoxonium ylides with aldehydes, naphthols, or coumarins at ambient temperature. The method exhibits broad substrate compatibility, accommodating various functional groups on sulfoxonium ylides and naphthol or coumarin derivatives and resulting in good to high yields of the desired products.

View Article and Find Full Text PDF

Sc-Catalyzed Asymmetric [2 + 2] Annulation of 2-Alkynylnaphthols with Dienes to Access Cyclobutene Frameworks.

Org Lett

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.

Herein, we introduce a scandium-catalyzed synthetic strategy that provides access to a diverse and functionalized array of cyclobutene frameworks adorned with a quaternary carbon center. This approach broadens the synthetic repertoire of 2-alkynylnaphthols with alkenes, offering a versatile platform for the construction of complex molecular architectures. The asymmetric catalytic [2 + 2] cycloaddition reaction demonstrates a wide substrate scope and an impressive functional group tolerance, yielding products with high efficiency, up to 97% yield, and excellent enantiomeric excess of up to 97%.

View Article and Find Full Text PDF

Rh(III)-Catalyzed [4 + 2] Annulation and Dehydrogenative Annulation of -Chloroimines with Maleimides.

J Org Chem

January 2025

Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.

We herein report a Rh(III)-catalyzed C-H bond coupling of -chloroimines with maleimides, in which the [4 + 2] annulation and dehydrogenative annulation processes can be selectively achieved by simply adjusting the reaction conditions. This protocol is compatible with various functional groups, shows exquisite selectivity, and presents a concise synthetic procedure to respective products in moderate to good yields. With all these merits, this strategy may be applicable in the construction of related azaheterocyclic skeletons.

View Article and Find Full Text PDF

The synthetic approach based on a sequence of Buchwald-Hartwig cross-coupling and annulation through intramolecular oxidative cyclodehydrogenation has been used for the construction of novel 4-alkyl-4-thieno[2',3':4,5]pyrrolo[2,3-]quinoxaline derivatives. For the first time, these polycyclic compounds were evaluated for antimycobacterial activity, including extensively drug-resistant strains. A reasonable bacteriostatic effect against HRv was demonstrated.

View Article and Find Full Text PDF

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!