Chronic kidney disease (CKD) is a complication of diabetes that affects circulating drug concentrations and elimination of drugs from the body. Multiple drugs may be prescribed for treatment of diabetes and co-morbidities, and CKD complicates the pharmacotherapy selection and dosing regimen. Characterizing variations in renal drug clearance using models requires large clinical datasets that are costly and time-consuming to collect. We propose a flexible approach to incorporate impaired renal clearance in pharmacokinetic (PK) models using descriptive statistics and secondary data with mechanistic models and PK first principles. Probability density functions were generated for various drug clearance mechanisms based on the degree of renal impairment and used to estimate the total clearance starting from glomerular filtration for metformin (MET) and dapagliflozin (DAPA). These estimates were integrated with PK models of MET and DAPA for simulations. MET renal clearance decreased proportionally with a reduction in estimated glomerular filtration rate (eGFR) and estimated net tubular transport rates. DAPA total clearance varied little with renal impairment and decreased proportionally to reported non-renal clearance rates. Net tubular transport rates were negative to partially account for low renal clearance compared with eGFR. The estimated clearance values and trends were consistent with MET and DAPA PK characteristics in the literature. Dose adjustment based on reduced clearance levels estimated correspondingly lower doses for MET and DAPA while maintaining desired dose exposure. Estimation of drug clearance rates using descriptive statistics and secondary data with mechanistic models and PK first principles improves modeling of CKD in diabetes and can guide treatment selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12248-024-00962-2 | DOI Listing |
Sci Rep
January 2025
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute , National Research Centre, Dokki, Cairo, 12622, Egypt.
Cisplatin is a chemotherapeutic drug, which exhibits undesirable side effects. Chitosan nanoparticles are promising for drug delivery. The aim of this study was to determine the effect of the brown alga Turbinaria triquetra ethyl acetate fraction and polysaccharides, either loaded on chitosan nanoparticles or free, against podocyturia and cisplatin nephrotoxicity in rats.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.
View Article and Find Full Text PDFBMJ Open
January 2025
Colorectal Cancer Center, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Introduction: The standard of care for stage III colon cancer is 3 or 6 months of double-drug regimen chemotherapy following radical surgery. However, patients with positive circulating tumour DNA (ctDNA) exhibit a high risk of recurrence risk even if they receive standard adjuvant chemotherapy. The potential benefit of intensified adjuvant chemotherapy, oxaliplatin, irinotecan, leucovorin and fluoropyrimidine (FOLFOXIRI), for ctDNA-positive patients remains to be elucidated.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Northwestern University, Chicago, IL, USA.
Background: Recent advances in Alzheimer's disease (AD) therapeutics involve immunization against amyloid-β (Aβ). Post-mortem brain analysis from the first active Aβ immunotherapy trial indicated clearance of Aβ in some AD patients. Yet, the mechanisms regulating Aβ clearance following immunization remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!