This paper discusses the simultaneous management of active and reactive power of a flexible renewable energy-based virtual power plant placed in a smart distribution system, based on the economic, operational, and voltage security objectives of the distribution system operator. The formulated problem aims to specify the minimum weighted sum of energy cost, energy loss, and voltage security index, considering the optimal power flow model, voltage security formulation, and the operating model of the virtual power plant. The virtual unit includes renewable sources, like wind systems, photovoltaic, and bio-waste units. Flexibility resources include electric vehicle parking lot and price-based demand response. In the mentioned scheme, parameters of load, renewable sources, electric vehicles, and energy prices are uncertain. This paper utilizes the Unscented Transformation method for modeling uncertainties. Fuzzy decision-making is utilized to extract a compromised solution. The suggested approach innovatively considers the simultaneous management of active and reactive power of a virtual unit with electric vehicles and price-based demand response. This is performed to promote economic, operational, and network security objectives. According to numerical results, the approach with optimal power management of renewable virtual units is capable of boosting the economic, operation, and voltage security status of the network by approximately 43%, 47-62%, and 26.9%, respectively, to power flow studies. Only price-based demand response can improve the voltage security, operation, and economic states of the network by about 19.5%, 35-47%, and 44%, respectively, compared to the power flow model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333721 | PMC |
http://dx.doi.org/10.1038/s41598-024-70095-1 | DOI Listing |
Philos Trans A Math Phys Eng Sci
January 2025
Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany.
The thirst for more efficient computational paradigms has reignited interest in computation in memory (CIM), a burgeoning topic that pivots on the strengths of more versatile logic systems. Surging ahead in this innovative milieu, multi-valued logic systems have been identified as possessing the potential to amplify storage density and computation efficacy. Notably, ternary logic has attracted widespread research owing to its relatively lower computational and storage complexity, offering a promising alternative to the traditional binary logic computation.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
Three-dimensional vertically stacked memory is more cost-effective than two-dimensional stacked memory. Vertically stacked memory using ferroelectric materials has great potential not only in high-density memory but also in neuromorphic fields because it secures low voltage and fast operation speed. This paper presents the implementation of a ferroelectric capacitor comprising a vertical two-layer stacked structure composed of a titanium nitride (TiN)/aluminum-doped hafnium oxide/TiN configuration.
View Article and Find Full Text PDFACS Omega
December 2024
Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
ACS Nano
December 2024
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.
The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.
View Article and Find Full Text PDFSci Rep
December 2024
Chair of Applied Electrodynamics and Plasma Technology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!