How we move our bodies affects how we perceive sound. For instance, head movements help us to better localize the source of a sound and to compensate for asymmetric hearing loss. However, many auditory experiments are designed to restrict head and body movements. To study the role of movement in hearing, we developed a behavioral task called sound-seeking that rewarded freely moving mice for tracking down an ongoing sound source. Over the course of learning, mice more efficiently navigated to the sound. Next, we asked how sound-seeking was affected by hearing loss induced by surgical removal of the malleus from the middle ear. After bilateral hearing loss sound-seeking performance drastically declined and did not recover. In striking contrast, after unilateral hearing loss mice were only transiently impaired and then recovered their sound-seek ability over about a week. Throughout recovery, unilateral mice increasingly relied on a movement strategy of sequentially checking potential locations for the sound source. In contrast, the startle reflex (an innate auditory behavior) was preserved after unilateral hearing loss and abolished by bilateral hearing loss without recovery over time. In sum, mice compensate with body movement for permanent unilateral damage to the peripheral auditory system. Looking forward, this paradigm provides an opportunity to examine how movement enhances perception and enables resilient adaptation to sensory disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333604 | PMC |
http://dx.doi.org/10.1038/s41598-024-67577-7 | DOI Listing |
Braz J Otorhinolaryngol
January 2025
Shanghai Jiao Tong University, School of Medicine, Hainan Branch of Shanghai Children's Medical Center, Department of Otorhinolaryngology, Sanya, China; Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Department of Otorhinolaryngology, Shanghai, China. Electronic address:
Objective: We aimed to investigate the correlation between prevalent risk factors for high-risk neonates in neonatal intensive care unit and their hearing loss, and to examine the audiological features and genetic profiles associated with different deafness mutations in our tertiary referral center. This research seeks to deepen our understanding of the etiology behind congenital hearing loss.
Methods: We conducted initial hearing screenings, including automated auditory brainstem response, distortion product otoacoustic emission, and acoustic immittance on 443 high-risk neonates within 7 days after birth and 42 days (if necessary) after birth.
Lang Speech
January 2025
Department of Educational Psychology, Leadership, & Counseling, Texas Tech University, USA.
Adapting one's speaking style is particularly crucial as children start interacting with diverse conversational partners in various communication contexts. The study investigated the capacity of preschool children aged 3-5 years ( = 28) to modify their speaking styles in response to background noise, referred to as noise-adapted speech, and when talking to an interlocutor who pretended to have hearing loss, referred to as clear speech. We examined how two modified speaking styles differed across the age range.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China.
Hearing loss is one of the conditions characterized by a high degree of genetic heterogeneity, and whole exome sequencing (WES) serves as a key method for identifying pathogenic variants. To date, 155 genes have been reported to be associated with nonsyndromic hearing loss. Recently, a study by Velde et al.
View Article and Find Full Text PDFJ Occup Med Toxicol
January 2025
School of Health Sciences, Department of Audiology, University of the Pacific, San Francisco, California, USA.
Background: Hazardous noise exposure is an important health concern in many workplaces and is one of the most common work-related injuries in the United States. Dental professionals are frequently exposed to high levels of occupational noise in their daily work environment. This noise is generated by various dental handpieces such as drills, suctions, and ultrasonic scalers.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Department of Radiology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
Purpose: Cochlear implantation (CI) surgery is essential for restoring hearing in individuals with severe sensorineural hearing loss. Accurate placement of the electrode within the cochlea is essential for successful auditory outcomes and minimizing complications. This study aims to analyze the relationship between the round window niche (RWN) alignment, its visibility during surgery, and the impact on surgical techniques and outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!