Regeneration of insulin-producing β-cells is an alternative avenue to manage diabetes, and it is crucial to unravel this process in vivo during physiological responses to the lack of β-cells. Here, we aimed to characterize how hepatocytes can contribute to β-cell regeneration, either directly or indirectly via secreted proteins or metabolites, in a zebrafish model of β-cell loss. Using lineage tracing, we show that hepatocytes do not directly convert into β-cells even under extreme β-cell ablation conditions. A transcriptomic analysis of isolated hepatocytes after β-cell ablation displayed altered lipid- and glucose-related processes. Based on the transcriptomics, we performed a genetic screen that uncovers a potential role of the molybdenum cofactor (Moco) biosynthetic pathway in β-cell regeneration and glucose metabolism in zebrafish. Consistently, molybdenum cofactor synthesis 2 () haploinsufficiency in mice indicated dysregulated glucose metabolism and liver function. Together, our study sheds light on the liver-pancreas crosstalk and suggests that the molybdenum cofactor biosynthesis pathway should be further studied in relation to glucose metabolism and diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333758 | PMC |
http://dx.doi.org/10.26508/lsa.202402771 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!