A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Serum-derived extracellular vesicles for the treatment of severe ocular surface disease. | LitMetric

AI Article Synopsis

  • The study investigates the differences between serum-derived extracellular vesicles (SDEVs) and free proteins in serum, focusing on their effects on corneal epithelial cells and inflammation.
  • SDEVs were found to have lower levels of pro-inflammatory cytokines and contained metabolites associated with cellular processes, indicating they retain beneficial properties for healing.
  • Unlike traditional serum, SDEVs promote cell migration without triggering inflammation, suggesting they could be a promising alternative treatment for severe ocular surface diseases.

Article Abstract

Purpose: Autologous serum is widely used for the treatment of severe ocular surface disease with mixed efficacy. Extracellular vesicles (EVs) are small membrane bound structures present in all body fluids, including serum. This study compared the proteomic, metabolomic, and inflammatory cytokine composition of serum-derived EVs (SDEVs) to that of the soluble free protein fraction and the subsequent capacity of SDEVs to induce corneal epithelial cell migration and inflammation.

Methods: SDEVs were isolated from human serum using size exclusion chromatography. SDEVs were analyzed using nanoparticle tracking analysis, transmission electron microscopy, and western blotting. The effects of SDEVs on corneal epithelial cell migration were tested using a standard scratch assay. Inflammatory cytokines in SDEVs and the free protein fraction were quantified using a microarray. A mutli-omics approach was further used to define SDEV cargo. The ability of SDEVs to modulate inflammation in corneal epithelial cells was quantified using ELISAs.

Results: Western blot and TEM confirmed the presence of SDEVs. Proinflammatory cytokines, along with complement proteins and TGF-β, were decreased in SDEVs compared to serum. Metabolites present in SDEVs were mostly involved in amino acid biosynthesis, the TCA cycle and oxidative phosphorylation. SDEVs exhibited pro-migratory effects similar to serum however, SDEVs did not induce secretion of IL-6 or IL-8.

Conclusions: SDEVs exhibit reduced levels of pro-inflammatory cytokines while retaining the beneficial wound healing properties of serum. Unlike serum, SDEVs do not induce inflammation. SDEVs may represent an alternative option for patients with severe ocular surface disease where traditional autologous serum has failed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtos.2024.08.009DOI Listing

Publication Analysis

Top Keywords

sdevs
15
severe ocular
12
ocular surface
12
surface disease
12
sdevs induce
12
corneal epithelial
12
extracellular vesicles
8
treatment severe
8
serum
8
autologous serum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!