A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NLRP3 inflammasome activation contributes to the development of the pro-fibrotic phenotype of lung fibroblasts. | LitMetric

Idiopathic pulmonary fibrosis (IPF) is an irreversible progressive interstitial lung disease of unknown cause. The poorly understood pathophysiology of IPF poses substantial challenges to the development of effective anti-lung fibrotic drugs. The NLRP3 inflammasome, a key component of the innate immune system, has recently been linked to the pathogenesis of lung fibrosis. However, the specific contributions of NLRP3 inflammasomes to determination of the pro-fibrotic phenotype of lung fibroblasts, which play a central role in the production of extracellular matrix protein, remain to be investigated. Therefore, the present study was performed to elucidate the involvement of NLRP3 inflammasome signalling pathways in modulation of lung fibroblast proliferation and differentiation. We found that activation of NLRP3 inflammasomes increased in lung fibroblasts derived from individuals with pulmonary fibrosis and in normal lung fibroblasts stimulated with transforming growth factor β and platelet-derived growth factor. Importantly, blockage of NLRP3 inflammasome signalling, either by gene silencing of NLRP3 or using pharmacological inhibitors of NLRP3, caspase-1, or IL-1 receptor, inhibited the proliferation, differentiation, and extracellular matrix protein synthesis of activated lung fibroblasts. Moreover, induction of the reactive oxygen species/thioredoxin-interacting protein axis, an upstream signalling pathway of NLRP3 inflammasomes, was essential for maintenance of the pro-fibrotic phenotype of lung fibroblasts. Interestingly, treatments with pharmacological inhibitors of NLRP3 inflammasomes prevented the progression of bleomycin-induced pulmonary fibrosis in mice. Collectively, these findings suggest that aberrant activation of NLRP3 inflammasomes is a critical event in the pathogenesis of IPF and that targeting NLRP3 inflammasomes may serve as a therapeutic strategy for IPF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2024.116496DOI Listing

Publication Analysis

Top Keywords

lung fibroblasts
24
nlrp3 inflammasomes
24
nlrp3 inflammasome
16
nlrp3
12
pro-fibrotic phenotype
12
phenotype lung
12
pulmonary fibrosis
12
lung
9
extracellular matrix
8
matrix protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!