ISGylation enhances dsRNA-induced interferon response and NFκB signaling in fallopian tube epithelial cells.

J Biol Chem

Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Published: September 2024

Heritable mutations in BRCA1 associate with increased risk of high-grade serous tubo-ovarian cancer. Nongenetic risk factors associated with this cancer, which arises from fallopian tube epithelial (FTE) cells, suggests a role for repetitive ovulation wherein FTE cells are exposed to inflammatory signaling molecules within follicular fluid. We previously reported increased NFκB and EGFR signaling in BRCA1-deficient primary FTE cells, with follicular fluid exposure further increasing abundance of interferon-stimulated gene (ISG) transcripts, including the ubiquitin-like protein ISG15 and other ISGylation pathway members. Both NFκB and type I interferon signaling are upregulated by stimulation of cGAS-STING or MDA5 and RIGI pattern recognition receptors. Since some pattern recognition receptors and their signal transduction pathway members are ISGylated, we tested the impact of ISG15 and ISGylation on interferon regulatory factor 3 (IRF3) and NFκB signaling through cGAS-STING or RIGI and MDA5 activation. Expression of ISG15 or UBA7, the E1-like ISG15-activating enzyme, in immortalized FTE cells was disrupted by CRISPR gene editing. Activation of IRF3 by RIGI or MDA5 but not cGAS-STING was attenuated by loss of either ISG15 or UBA7 and this was reflected by a similar effect on NFκB activation and downstream targets. Loss of ISGylation decreased levels of both MDA5 and RIGI, with knockdown of RIGI but not MDA5, decreasing IRF3 and NFκB activation in parental cells. These finding indicate that ISGylation enhances the ability of dsRNA to activate cytokine release and proinflammatory signaling. Further work to explore ISGylation as a target for prevention of high-grade serous tubo-ovarian cancer in BRCA1 mutation carriers is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418117PMC
http://dx.doi.org/10.1016/j.jbc.2024.107686DOI Listing

Publication Analysis

Top Keywords

fte cells
16
rigi mda5
12
isgylation enhances
8
nfκb signaling
8
fallopian tube
8
tube epithelial
8
high-grade serous
8
serous tubo-ovarian
8
tubo-ovarian cancer
8
follicular fluid
8

Similar Publications

Article Synopsis
  • Incessant ovulation contributes to ovarian high-grade serous carcinomas (HGSC), which primarily arise from the fallopian tube epithelium (FTE), and receptor tyrosine kinase (RTK) ligands play a key role in this process.
  • A study investigated follicular fluid exosomes from women undergoing in vitro fertilization to identify RTK ligands and their impact on FTE cells, using various RTK inhibitors.
  • The findings revealed that FF exosomes were rich in transformative abilities and essential EGFR ligands, promoting cell growth and migration, indicating their significant contribution to HGSC development.
View Article and Find Full Text PDF

Ovulation sources ROS to confer mutagenic activities on the TP53 gene in the fallopian tube epithelium.

Neoplasia

January 2025

Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC. Electronic address:

Introduction: Epidemiological studies have implicated ovulation as a risk factor for ovarian high-grade serous carcinoma (HGSC) at the initiation stage. Precancerous lesions of HGSC commonly exhibit TP53 mutations attributed to DNA deamination and are frequently localized in the fallopian tube epithelium (FTE), a site regularly exposed to ovulatory follicular fluid (FF). This study aimed to assess the mutagenic potential of FF and investigate the expression levels and functional role of activation-induced cytidine deaminase (AID) following ovulation, along with the resulting TP53 DNA deamination.

View Article and Find Full Text PDF

Ovarian cancer is the sixth leading cause of cancer-related mortality among individuals with ovaries, and high-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype. Characterized by a distinct and aggressive metastatic pattern, HGSOC can originate in the fallopian tube with the transformation of fallopian tube epithelial (FTE) cells, which metastasize to the ovary and subsequently to the omentum and peritoneal cavity. The omentum is a privileged metastatic site, and the metabolic exchange underlying omental metastasis could provide enzyme or receptor targets to block spread.

View Article and Find Full Text PDF

This study explores the impact of γ-irradiation on ethanolic extracts of Solanum aculeastrum Dunal. The anti-cancer and antimicrobial properties were investigated. The obtained results revealed that total phenol (TP) and total flavonoid (TF) of total ethanol extract (100%) (FTE) were higher than 70% ethanol extract (SE), and these contents increased after gamma radiation with 5 kGy.

View Article and Find Full Text PDF

Vitamin D Significantly Inhibits Carcinogenesis in the Mogp-TAg Mouse Model of Fallopian Tube Ovarian Cancer.

Nutrients

September 2024

Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Endeavor Health, Evanston, IL 60201, USA.

Epidemiological and observational studies suggest that vitamin D has potential for the chemoprevention of ovarian cancer. The anticancer effect of vitamin D in the fallopian tube epithelium (FTE), which is now thought to harbor the precursor cells for high grade ovarian cancer, is not known. The purpose of this study was to investigate whether vitamin D can inhibit carcinogenesis in the mogp-TAg fallopian tube (FT) ovarian cancer mouse model and examine underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!