Serum protein albumin and chromium: Mechanistic insights into the interaction between ions, nanoparticles, and protein.

Int J Biol Macromol

Department of Chemistry, Western University, London, ON N6A 5B7, Canada; Surface Science Western, Western University, London, ON N6G 0J3, Canada; Lawson Health Research Institute, London, ON N6C 2R5, Canada. Electronic address:

Published: October 2024

The interaction of human proteins and metal species, both ions and nanoparticles, is poorly understood despite their growing importance. These materials are the by-products of corrosion processes and are of relevance for food and drug manufacturing, nanomedicine, and biomedical implant corrosion. Here, we study the interaction of Cr(III) ions and chromium oxide nanoparticles with bovine serum albumin in physiological conditions. This study combined electrophoretic mobility measurements, spectroscopy, and time-of-flight secondary ion mass spectrometry with principal component analysis. It was determined that neither metal species resulted in global albumin unfolding. The Cr(III) ions interacted strongly with amino acids found in previously discovered metal binding sites, but also were most strongly implicated in the interaction with negatively charged acid residues, suggesting an electrostatic interaction. Bovine serum albumin (BSA) was found to bind to the CrO nanoparticles in a preferential orientation, due to electrostatic interactions between the positive amino acid residues and the negative chromium oxide nanoparticle surface. These findings ameliorate our understanding of the interaction between trivalent chromium ions and nanoparticles, and biological macromolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134845DOI Listing

Publication Analysis

Top Keywords

ions nanoparticles
12
metal species
8
criii ions
8
chromium oxide
8
bovine serum
8
serum albumin
8
acid residues
8
interaction
6
ions
5
nanoparticles
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!