Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Currently there is no generally accepted standardized approach for the pathological evaluation of soft tissue sarcoma (STS) histology appearance after preoperative radiotherapy (PORT). This study aimed to investigate the prognostic value of pathological appearance after PORT for patients with high-grade limb/trunk STS.
Methods: A cohort of 116 patients with high-grade STS of the limb/trunk treated with PORT followed by resection were evaluated. Patient characteristics, imaging tumor morphology (size, volume), and histopathology (mitotic and necrosis rate, viable cell, hyalinization/fibrosis cytopathic effect) were reviewed and reassessed. Disease free survival (DFS) and overall survival (OS) were calculated using the Kaplan-Meier method, and the hazard ratio was derived from Cox proportional hazard models. Two predictive nomograms were calculated based on significant predictors identified.
Results: The 5-year DFS and OS were 52.9% and 70.3%, respectively. Tumor size before (HR:1.07, 95%CI: 1.01-1.14) and after PORT (HR:1.08, 95%CI: 1.01-1.14), tumor volume (HR:1.06, 95%CI: 1.01-1.12), mitotic rate after PORT (HR: 1.06, 95%CI: 1.02-1.11), mitotic rate change after PORT (HR:1.04, 95%CI:1.00-1.09) were independent risk factors for DFS. Tumor size before (HR:1.08, 95%CI: 1.03-1.14) and after PORT (HR:1.09, 95%CI: 1.04-1.15), tumor volume (HR:1.05, 95%CI: 1.01-1.09), mitotic rate after PORT (HR: 1.09, 95%CI: 1.04-1.13), mitotic rate change after PORT (HR:1.05, 95%CI:1.01-1.09) were independent risk factors for OS. The C-index of pathologic predictive nomogram based on mitotic rate for DFS and OS were 0.67 and 0.73, respectively. The C-index of morphology-pathology predictive nomogram for OS was 0.79.
Conclusion: Tumor size before and after PORT, tumor volume, mitotic rate after PORT, mitotic rate change after PORT were independent risk factors for DFS and OS in high-grade STS patients treated with PORT. The mitotic rate, independent of tumor morphology, showed its potential as a prognostic biomarker for pathologic evaluation in patients treated with PORT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2024.110482 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!