Machine learning and deep learning prediction of patient specific quality assurance in breast IMRT radiotherapy plans using Halcyon specific complexity indices.

Radiother Oncol

Medical Physics Department, Centre François Baclesse, 14000 Caen, France; Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France. Electronic address:

Published: November 2024

Introduction: New radiotherapy machines such as Halcyon are capable of delivering dose-rate of 600 monitor-units per minute, allowing large numbers of patients treated per day. However, patient-specific quality assurance (QA) is still required, which dramatically decrease machine availability. Innovative artificial intelligence (AI) algorithms could predict QA result based on complexity metrics. However, no AI solution exists for Halcyon machines and the complexity metrics to be used have not been definitively determined. The aim of this study was to develop an AI solution capable of firstly determining the complexity indices to be obtained and secondly predicting patient-specific QA in a routine clinical setting.

Methods: Three hundred and eighteen beams from 56 patients with breast cancer were used. The seven complexity indices named Modulation-Complexity-Score (MCS), Small-Aperture-Score (SAS10), Beam-Area (BA), Beam-Irregularity (BI), Beam-Modulation (BM), Gantry and Collimator angles were used as input to the AI model. Machine learning (ML) and deep learning (DL) models using tensorflow were set up to predict DreamDose QA conformance.

Results: MCS, BI, gantry and collimator angle are not correlated with QA compliance. Therefore, ML and DL models were trained using SAS10, BA and BM complexity indices. ROC analyses enabled to find best predicted probability threshold to increase specificity and sensitivity. ML models did not show satisfactory performance with an area under-the-curve (AUC) of 0.75 and specificity and sensitivity of 0.88 and 0.86. However, optimised DL model showed better performance with an AUC of 0.95 and specificity and sensitivity of 0.98 and 0.97.

Conclusion: The DL model demonstrated a high degree of accuracy in its predictions of the quality assurance (QA) results. Our online predictive QA-platform offers significant time savings in terms of accelerator occupancy and working time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2024.110483DOI Listing

Publication Analysis

Top Keywords

complexity indices
16
quality assurance
12
specificity sensitivity
12
machine learning
8
learning deep
8
deep learning
8
complexity metrics
8
gantry collimator
8
complexity
6
learning prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!