Transition-metal phosphates/phosphides showcase significant promise for energy-related applications because of their high theoretical electrochemical characteristics. However, sluggish electro/ion transfer rates and kinetically unfavorable reaction sites hinder their application at high mass loading. Herein, a self-supporting electrode based on transition-metal phosphates was successfully fabricated via a one-step electrodeposition process. The nanosheet structure of transition-metal phosphates, formed by interconnecting nanoparticles, effectively mitigates the impact of stress and achieves a high mass-loading (21 mg cm) of the electrode. Additionally, the oxygen vacancy-rich and porous nanostructure of transition-metal phosphates endows the as-prepared electrodes with a significantly increased conductivity and fast ion migration rate for enhancing electrochemical kinetics. Consequently, the as-fabricated transition-metal phosphate electrode displays the highest areal specific capacity of 39.2F cm. Furthermore, the asymmetric supercapacitor achieves a maximum energy density of 0.79 mWh cm and a high capacity retention of 93.0 % for 10000 cycles under 60 mA cm. This work provides an ideal strategy for fabricating flexible electrodes with high mass loading and synthesizing transition-metal phosphate electrodes rich in oxygen vacancies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.08.112 | DOI Listing |
Nat Prod Res
January 2025
Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, PR China.
The leaves of (Batal) Iljinsk., a plant native to China that has long been used in traditional Chinese medicine to treat diabetes. It remains to be determined what chemical constituents are responsible for this effect.
View Article and Find Full Text PDFElife
January 2025
Cell Biology, Hospital for Sick Children, Toronto, Canada.
Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
Measuring lower extremity impact acceleration is a common strategy to identify runners with increased injury risk. However, existing axial peak tibial acceleration (PTA) thresholds for determining high-impact runners typically rely on small samples or fixed running speeds. This study aimed to describe the distribution of axial PTA among runners at their preferred running speed, determine an appropriate adjustment for investigating impact magnitude at different speeds, and compare biomechanics between runners classified by impact magnitude.
View Article and Find Full Text PDFSmall
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China.
Metal-organic frameworks (MOFs) hold considerable promise for environmental remediation owing to their exceptional performance and distinctive structure. Nonetheless, the practical implementation of MOFs encounters persistent technical hurdles, notably susceptibility to loss, challenging recovery, and potential environmental toxicity arising from the fragility, insolubility, and poor processability of MOFs. MOF-based three-dimensional macrostructures (3DMs) inherit the advantageous attributes of the original MOFs, such as ultra-high specific surface area, tunable pore size, and customizable structure, while also incorporating the intriguing characteristics of bulk materials, including hierarchical structure, facile manipulation, and structural flexibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!