Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hemin triggers intracellular reactive oxygen species (ROS) accumulation and enhances heme oxygenase-1 (HOX-1) activity, indicating its potential as an anticancer agent, though precise control of its intracellular levels is crucial. The study explores the impact of hemin and its derivatives, hemin-tyrosine, and hemin-styrene (H-Styr) conjugates on migration, HOX-1 expression, specific apoptosis markers, mitochondrial functions, and ROS generation in breast cancer cells. Molecular docking and dynamics simulations were used to understand the interactions among HOX-1, heme, and the compounds. Hemin outperforms its derivatives in inducing HOX-1 expression, exhibiting pro-oxidative effects and reducing cell migration. Molecular simulations show that heme binds favorably to HOX-1, followed by the other compounds, primarily through van der Waals and electrostatic forces. However, only van der Waals forces determine the H-Styr complexation. These interactions, influenced by metalloporphyrin characteristics, provide insights into HOX-1 regulation and ROS generation, potentially guiding the development of breast cancer therapies targeting oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403666 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.4c00989 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!