Photocatalytic water decomposition using solar energy is one of the most effective hydrogen production technologies. The development of a structurally stable photocatalyst for hydrogen production without cocatalysts and photosensitizers remains a great challenge. In this paper, complex photocatalyst compounds and with different crystal structures were designed and obtained by connecting the 4'-(2,4-disulfophenyl)-4,2':6',4″-terpyridine organic ligands with Zn(Ac)·2HO and CdCO. These products were used for photocatalytic hydrogen production separately, and the hydrogen production rates of compounds and were 0.66 mol·mol·h and 0.12 mol·mol·h, respectively, without the addition of any cocatalysts and photosensitizers, and their charge separation and transfer processes were verified by PL, time-resolved PL, and photocurrent. Compound was tested in 6 cycles over 18 h and showed high stability and reproducibility.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c02118DOI Listing

Publication Analysis

Top Keywords

hydrogen production
20
cocatalysts photosensitizers
8
hydrogen
5
production
5
complexes based
4
based zinc
4
zinc cadmium
4
cadmium visible
4
visible light-driven
4
light-driven hydrogen
4

Similar Publications

Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.

View Article and Find Full Text PDF

Construction of CuMoS/ZnO Heterostructures and Mechanism of Photocatalytic Hydrogen Production.

Langmuir

January 2025

Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.

Constructing wide and narrow band gap heterogeneous semiconductors is a method to improve the activity of photocatalysts. In this paper, CMS/ZnO heterojunctions were prepared by solvothermal loading of ZnO particles on the surface of CuMoS nanosheets. The photocatalytic H precipitation rate is about 545 μmol·g·h, which is 6.

View Article and Find Full Text PDF

A comprehensive study of the influence of non-covalent interactions on electron density redistribution during the reaction between acetic acid and methylamine.

J Mol Model

January 2025

Sorbonne Université, CNRS, "De la Molécule aux Nano-Objets : Réactivité, Interactions et Spectroscopies", MONARIS, UMR 8233, 4 Place Jussieu, Paris, 75005, France.

Context: A chemical reaction can be described, from a physicochemical perspective, as a redistribution of electron density. Additionally, non-covalent interactions locally modify the electron density distribution. This study aims to characterize the modification of reactivity caused by the presence of non-covalent interactions such as hydrogen bonds, in a reaction involving the formation of two bonds and the breaking of two others: CH₃COOH + NH₂CH₃ → CH₃CONHCH₃.

View Article and Find Full Text PDF

Disproportion between reactive oxygen species (ROS) production and the body's antioxidant system can cause oxidative stress, which is considered a common denominator in various pathological conditions, including cardiovascular diseases, aging, and cognitive disorders. The generation of free radicals, which occurs through partial reduction of oxygen, can quickly overwhelm the endogenous antioxidant system capacity of the cell. This causes lipid, protein, DNA and RNA damage, inflammation, and overall cell degeneration, which can be mitigated by various antioxidants.

View Article and Find Full Text PDF

Ammonia Decomposition Catalyzed by Co Nanoparticles Encapsulated in Rare Earth Oxide.

J Phys Chem Lett

January 2025

Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!