Neutrophils are the first immune cells to reach inflamed sites and contribute to the pathogenesis of chronic inflammatory skin diseases. Yet, little is known about the pattern of neutrophil infiltration in inflamed skin in vivo and the mechanisms mediating their recruitment. Here, we provide insight into the dynamics of neutrophil infiltration in skin in response to acute or repeated inflammatory stress, highlighting a novel keratinocyte- and keratin 17 (K17)-dependent mechanism that regulates neutrophil recruitment to inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12 h and resolves within 24 h. A subsequent TPA treatment or a UVB challenge, when applied 24 h but not 48 h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of chemoattractants by stressed keratinocytes. K17 binds RACK1, a scaffold protein essential for PKCα activity. The N-terminal head domain of K17 is crucial for its association with RACK1 and regulation of PKCα activity. Analysis of RNAseq data reveals a signature consistent with TAR and PKCα activation in inflammatory skin diseases. These findings uncover a novel, keratin-dependent mechanism that amplifies neutrophil recruitment in skin under stress, with direct implications for inflammatory skin disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361748PMC
http://dx.doi.org/10.1371/journal.pbio.3002779DOI Listing

Publication Analysis

Top Keywords

neutrophil infiltration
16
inflammatory skin
12
inflamed skin
12
pkcα activity
12
skin
10
amplifies neutrophil
8
skin diseases
8
neutrophil recruitment
8
tpa treatment
8
neutrophil
7

Similar Publications

Piplartine alleviates sepsis-induced acute kidney injury by inhibiting TSPO-mediated macrophage pyroptosis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China. Electronic address:

Sepsis-induced acute kidney injury (SI-AKI) is the most common organ dysfunction of sepsis, characterized with prolonged hospitalization periods and significantly elevated mortality rates. Piplartine (PLG), an alkaloid extracted from Piper longum within the Piperaceae family, has exhibited diverse pharmacological activities, including anti-inflammatory, anti-atherosclerotic, and anti-tumor effects. Herein, we investigated whether the PLG could reverse SI-AKI and explore its possible anti-inflammatory mechanisms.

View Article and Find Full Text PDF

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury.

Biomolecules

December 2024

Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan.

The prognosis of spinal cord injury (SCI) is closely linked to secondary injury processes, predominantly driven by neuroinflammation. Interleukin-18 (IL-18) plays a pivotal role in this inflammatory response. In previous work, we developed an anti-IL-18 antibody capable of neutralizing the active form of IL-18.

View Article and Find Full Text PDF

PEPITEM is an immune-modulatory peptide that effectively regulates inflammation and mitigates immune-mediated inflammatory diseases (IMIDs). Here, we identify two independently active tripeptide pharmacophores within PEPITEM and engineered peptidomimetics with enhanced pharmacodynamic properties. These peptidomimetics regulate T-cell trafficking in vitro and reduce T-cell, neutrophil and macrophage numbers in the inflamed peritoneal cavity in vivo.

View Article and Find Full Text PDF

Activation of autophagy with PF-06409577 alleviates heatstroke-induced organ injury.

Environ Int

January 2025

Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China; Organ Transplant Institute, 900th Hospital of Joint Logistic Support Force, Fuzhou 350025, China. Electronic address:

Heat waves are a significant environmental issue threatening global human health. Extreme temperatures can lead to various heat-related illnesses, with heatstroke being among the most severe. Currently, there are no effective treatments to mitigate the multi-organ damage caused by heatstroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!