This article studies the containment control problem of nonlinear multiagent systems (MASs) subjected to communication link faults and dead-zone inputs. In case of an unknown fault in the communication link, there is no constant Laplacian matrix anymore and each follower agent cannot be informed of the global information simultaneously. To deal with this problem, an adaptive compensating estimator is constructed to estimate the signal spanned by the leaders. Instead of using the linear filter, a nonlinear filter is employed, which both solves the classical complexity explosion in the traditional backstepping method and flushes out the usefulness of the boundary layer error. Considering the dead zone input, we propose two event-triggered schemes, that is, the update-triggered scheme and the transmit-triggered scheme. In the former, the threshold function involves the tracking errors and additional dynamic variable, which can provide the desirable tradeoff between the containment control performance of the considered MASs and saving communication resources. In the latter, the triggered condition is designed according to the characteristic of dead zone, which makes the communication burden be reduced further. Following the backstepping design framework, an adaptive containment control is constructed, it is shown that the containment error can converge to an adjustable residual set even if MASs are subjected to the unknown and bounded communication link faults and dead-zone inputs. Finally, an example is given to show the effectiveness of the proposed results.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2024.3440356DOI Listing

Publication Analysis

Top Keywords

faults dead-zone
12
dead-zone inputs
12
containment control
12
communication link
12
nonlinear multiagent
8
multiagent systems
8
mass subjected
8
link faults
8
dead zone
8
communication
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!