Supermolecule-Opitimized Defect Engineering of Rich Nitrogen-Doped Porous Carbons for Advanced Zinc-Ion Hybrid Capacitors.

ChemSusChem

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China.

Published: January 2025

Pitch-based porous carbons with adjustable surface chemical property and controllable pore structure are regarded as promising cathode materials for aqueous zinc-ion hybrid capacitors (ZIHCs), while its disordered carbon matrix and microstructure as well as insufficient surface defects often result in low Zn-storage capacity and poor rate capability of ZIHCs. Herein, a synergetic strategy of self-assembled supermolecule and enriched defective carbon engineering was developed to achieve ultrahigh edge-nitrogen doping for ZIHCs. The crystallite defects and surface structure of porous carbon could be effectively achieved through grafting electronegative oxygen-containing small molecules and high-level nitrogen-containing functional groups between modified polycyclic aromatic hydrocarbon and supermolecule framework. The optimized three-dimensional carbon structure delivered high capacity of 218 mAh g at 0.2 A g, fast charge/discharge capability, enhanced energy density (165.4 Wh kg) and superior cycling stability (95 % retention after 10000 cycles as cathode of ZIHCs). This provided new insight into the controllable synthesis of carbon cathodes for ZIHCs and expects to prepare functional porous carbon by supermolecules and special precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202401311DOI Listing

Publication Analysis

Top Keywords

porous carbons
8
zinc-ion hybrid
8
hybrid capacitors
8
porous carbon
8
carbon
6
zihcs
5
supermolecule-opitimized defect
4
defect engineering
4
engineering rich
4
rich nitrogen-doped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!