Aptamers are oligonucleotide sequences that can connect to particular target molecules, similar to monoclonal antibodies. They can be chosen by systematic evolution of ligands by exponential enrichment (SELEX), and are modifiable and can be synthesized. Even if the SELEX approach has been improved a lot, it is frequently challenging and time-consuming to identify aptamers experimentally. In particular, structure-based methods are the most used in computer-aided design and development of aptamers. For this purpose, numerous web-based platforms have been suggested for the purpose of forecasting the secondary structure and 3D configurations of RNAs and DNAs. Also, molecular docking and molecular dynamics (MD), which are commonly utilized in protein compound selection by structural information, are suitable for aptamer selection. On the other hand, from a large number of sequences, artificial intelligence (AI) may be able to quickly discover the possible aptamer candidates. Conversely, sophisticated machine and deep-learning (DL) models have demonstrated efficacy in forecasting the binding properties between ligands and targets during drug discovery; as such, they may provide a reliable and precise method for forecasting the binding of aptamers to targets. This research looks at advancements in AI pipelines and strategies for aptamer binding ability prediction, such as machine and deep learning, as well as structure-based approaches, molecular dynamics and molecular docking simulation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4tb00909f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!