The horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system clustered regularly interspaced short palindromic repeats (CRISPR)-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agricultural strains and its antiplasmid efficacy in an agricultural niche: manure. Analyzing 1,986 genomes from human and animal hosts, we show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agricultural strains. Using plasmid conjugation assays, we found that CRISPR-Cas is a significant barrier against resistance plasmid transfer in manure. Finally, we used a CRISPR-based antimicrobial approach to cure resistant of erythromycin resistance, but this was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show that CRISPR-Cas is prevalent and effective in an agricultural setting and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a One Health approach.IMPORTANCEAntibiotic resistance is a growing global health crisis in human and veterinary medicine. Previous work has shown technologies based on CRISPR-Cas-a bacterial defense system-to be effective in tackling antibiotic resistance. Here we test if CRISPR-Cas is present and effective in agricultural niches, specifically in the ubiquitously present bacterium, . We show that CRISPR-Cas is both prevalent and functional in manure and has the potential to be used to specifically kill bacteria carrying antibiotic resistance genes. This study demonstrates the utility of CRISPR-Cas-based strategies for control of antibiotic resistance in agricultural settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409644PMC
http://dx.doi.org/10.1128/aem.00876-24DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
32
resistance
13
crispr-cas
9
plasmid transfer
8
antibiotic
8
acquisition manure
8
resistance genes
8
bacterial defense
8
antibiotic-resistant bacteria
8
prevalence crispr-cas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!