Different organs respond differently to cisplatin (CDDP)-induced toxicity. Oleuropein (OLE) is a natural phenolic antioxidant. The purpose of this study was to determine the potential protective effect of OLE against CDDP-induced ototoxicity by evaluating expression of genes associated with deoxyribonucleic acid (DNA) damage and repair in cochlear cells. House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were treated using CDDP, OLE, and OLE-CDDP. The water-soluble tetrazolium salt assay was used for monitoring cell viability. Deoxyribonucleic acid damage in cells due to the CDDP, OLE, and combination treatments was determined using a flow-cytometric kit. The change in the expression of 84 genes associated with CCDP, OLE, and OLE-CDDP treatments that induced DNA damage was tested using the reverse transcription polymerase chain reaction array. Changes ≥3-fold were considered significant. House Ear Institute-Organ of Corti 1 cell viability was significantly reduced by CDDP. The OLE-CDDP combination restored the cell viability. Cisplatin increased the H2AX ratio, while OLE-CDDP combination decreased it. Some of the DNA damage-associated genes whose expression was upregulated with CDDP were downregulated with OLE-CDDP, while the expression of genes such as Gadd45g and Rev1 was further downregulated. The expression of DNA repair-related Abl1, Dbd2, Rad52, and Trp53 genes was downregulated with CDDP, whereas their expression was upregulated with OLE-CDDP treatment. In cochlear cells, the OLE-CDDP combination downregulated DNA damage-associated gene expression relative to that upregulated mainly by CDDP. The results revealed that OLE has a potential protective effect on CDDP-induced ototoxicity in cochlear cells by altering the expression of DNA damage-related genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232037PMC
http://dx.doi.org/10.5152/iao.2024.231288DOI Listing

Publication Analysis

Top Keywords

cochlear cells
16
deoxyribonucleic acid
12
expression genes
12
cell viability
12
ole-cddp combination
12
expression
9
damage-associated genes
8
potential protective
8
cddp-induced ototoxicity
8
genes associated
8

Similar Publications

Protective Effects of Fasudil Against Cisplatin-Induced Ototoxicity in Zebrafish: An In Vivo Study.

Int J Mol Sci

December 2024

Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea.

While cisplatin is an effective anti-tumor treatment, it induces ototoxicity through mechanisms involving DNA damage, oxidative stress, and programmed cell death. Rho-associated coiled-coil-containing protein kinase (ROCK) is essential for numerous cellular processes, including apoptosis regulation. Studies have suggested that ROCK inhibitors could prevent apoptosis and promote regeneration.

View Article and Find Full Text PDF

Mutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.

View Article and Find Full Text PDF

Cochlear outer hair cells (OHCs) transduce sound-induced vibrations of their stereociliary bundles into receptor potentials that drive changes in cell length. While fast, phasic OHC length changes are thought to underlie an amplification process required for sensitive hearing, OHCs also exhibit large tonic length changes. The origins and functional significance of this tonic motility are unclear.

View Article and Find Full Text PDF

Corrigendum: Characterization of expression in mouse cochlear hair cells.

Front Genet

December 2024

State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.

[This corrects the article DOI: 10.3389/fgene.2021.

View Article and Find Full Text PDF

Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!