A study of saturated vapor over the pyridine -oxide-boron trifluoride (PyO-BF) adduct was carried out at = 448(5) K by a synchronous gas electron diffraction/mass spectrometry (GED/MS) experiment. Due to the absence of ions in the mass spectrum, indicating the presence of a structure with an O-B dative bond, several models of vapor composition were tested by the GED method. It was found that the dominant molecular form (up to 100%) in vapor is the PyO-BF adduct. Using the DFT/M06-2X/aug-cc-pVTZ method, geometric optimization of the molecular ion [PyO-BF] was carried out, which showed its intrinsic instability and dissociation into a [PyO] cation and a BF molecule. This study certainly demonstrates the significant advantage of the GED method to determine the qualitative and quantitative gas-phase composition of dative-bonded adducts and other noncovalent complexes as well, whereas the interpretation of mass spectra may be ambiguous due to the possible intrinsic instability of ions containing a dative bond. The nature of the O-B bond is discussed in terms of the natural bond orbitals (NBOs) and the quantum theory of atoms in molecules (QTAIM). A comparison of structural and energetic parameters for PyO-BF and the previously studied BF adducts allows the theoretical comprehension of the nature of the O-B bond to be extended and to explain the different thermal stabilities of these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c02714DOI Listing

Publication Analysis

Top Keywords

gas electron
8
pyo-bf adduct
8
dative bond
8
ged method
8
intrinsic instability
8
nature o-b
8
o-b bond
8
bond
5
adduct pyridine
4
pyridine -oxide
4

Similar Publications

Temperature-dependent pathways in carbon dioxide electroreduction.

Sci Bull (Beijing)

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. Electronic address:

Temperature affects both the thermodynamics of intermediate adsorption and the kinetics of elementary reactions. Despite its extensive study in thermocatalysis, temperature effect is typically overlooked in electrocatalysis. This study investigates how electrolyte temperature influences CO electroreduction over Cu catalysts.

View Article and Find Full Text PDF

Preparation of nitrogen-doped biocarbon from sewage sludge and pine sawdust for superior hydrogen sulfide removal: Experimental and DFT studies.

Environ Res

January 2025

Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:

Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.

View Article and Find Full Text PDF

Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture.

View Article and Find Full Text PDF

Accelerating electron transfer reduces CH and CO emissions in paddy soil.

J Environ Manage

January 2025

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:

As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.

View Article and Find Full Text PDF

Phanerochaete chrysosporium hyphae bio-crack, endocytose and metabolize plastic films.

J Hazard Mater

January 2025

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China.

Numerous studies have focused on the effect and mechanism of plastic degradation; due to their high persistence, petroleum-based plastics are difficult for microbes to mineralize. Although such plastics have been demonstrated to be mineralized by white rot fungus, the reactions at the molecular level remain unknown. Here, we show the whole mineralization model of polyethylene film, that can be summarized as follows: 1) white rot fungus colonizes on polyethylene film, using additives as dissimilated carbon sources; 2) the fungus secretes extracellular enzymes protein, combining with stearic acid as electron donor, causes oxidation and cracking of polyethylene film; and 3) partial dissociated sub-microplastic debris access to cells, further oxidizes in sequential actions of intracellular enzymes, and ultimately mineralize via β-oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!