Maf1, originally described as a repressor of RNA polymerase III (RNAP III) transcription in yeast, participates in multiple functions across eukaryotes. However, the knowledge about Maf1 in protozoan parasites is scarce. To initiate the study of Maf1 in Leishmania major, we generated a cell line that overexpresses this protein. Overexpression of Maf1 led to a significant reduction in the abundance of tRNAs, 5S rRNA, and U4 snRNA, demonstrating that Maf1 regulates RNAP III activity in L. major. To further explore the roles played by Maf1 in this microorganism, global transcriptomic and proteomic changes due to Maf1 overexpression were determined using RNA-sequencing and label-free quantitative mass spectrometry. Compared to wild-type cells, differential expression was observed for 1082 transcripts (615 down-regulated and 467 up-regulated) and 205 proteins (132 down-regulated and 73 up-regulated) in the overexpressing cells. A correlation of 44% was found between transcriptomic and proteomic results. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins are mainly involved in transcription, cell cycle regulation, lipid metabolism and transport, ribosomal biogenesis, carbohydrate metabolism, autophagy, and cytoskeleton modification. Thus, our results suggest the involvement of Maf1 in the regulation of all these processes in L. major, as reported in other species, indicating that the functions performed by Maf1 were established early in eukaryotic evolution. Notably, our data also suggest the participation of L. major Maf1 in mRNA post-transcriptional control, a role that, to the best of our knowledge, has not been described in other organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202400636RRDOI Listing

Publication Analysis

Top Keywords

maf1
11
leishmania major
8
major maf1
8
rnap iii
8
transcriptomic proteomic
8
major
5
transcriptome proteome
4
proteome changes
4
changes triggered
4
triggered overexpression
4

Similar Publications

MAF1 inhibits hepatocarcinogenesis by fostering an immunostimulatory tumor microenvironment.

J Immunother Cancer

January 2025

State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China

Background: The biological significance of MAF1, a tumor suppressor, in carcinogenesis and immune response of hepatocellular carcinoma (HCC) remains unreported. Understanding the underlying mechanisms by which MAF1 enhances anti-tumor immunity in HCC is crucial for developing novel immunotherapy strategies and enhancing clinical responses to treatment for patients with HCC.

Methods: Mice were subjected to hydrodynamic tail vein injections of transposon vectors to overexpress AKT/NRas, or c-Myc, with or without wild-type (WT) or mutant-activated (-4A) MAF1, or short-hairpin MAF1 (shMAF1).

View Article and Find Full Text PDF

Progesterone receptors (PR) can regulate transcription by RNA Polymerase III (Pol III), which transcribes small non-coding RNAs, including all transfer RNAs (tRNAs). We have previously demonstrated that PR is associated with the Pol III complex at tRNA genes and that progestins downregulate tRNA transcripts in breast tumor models. To further elucidate the mechanism of PR-mediated regulation of Pol III, we studied the interplay between PR, the Pol III repressor Maf1, and TFIIIB, a core transcription component.

View Article and Find Full Text PDF
Article Synopsis
  • Ischaemic stroke leads to significant neuronal damage due to a lack of glucose and oxygen, causing serious disabilities and even death.
  • RNA polymerase III (Pol III) is crucial for protein synthesis in neurons, but its activity is highly affected during ischaemic stress, which impairs brain function.
  • Research indicates that Pol III plays different roles in the brain, such as protecting neurons in the acute phase of a stroke and aiding recovery later on, with the mTOR-MAF1 signaling pathway showing promise for enhancing both neuroprotection and repair.
View Article and Find Full Text PDF

We deployed the Blended Genome Exome (BGE), a DNA library blending approach that generates low pass whole genome (1-4× mean depth) and deep whole exome (30-40× mean depth) data in a single sequencing run. This technology is cost-effective, empowers most genomic discoveries possible with deep whole genome sequencing, and provides an unbiased method to capture the diversity of common SNP variation across the globe. To evaluate this new technology at scale, we applied BGE to sequence >53,000 samples from the Populations Underrepresented in Mental Illness Associations Studies (PUMAS) Project, which included participants across African, African American, and Latin American populations.

View Article and Find Full Text PDF

Maf1, originally described as a repressor of RNA polymerase III (RNAP III) transcription in yeast, participates in multiple functions across eukaryotes. However, the knowledge about Maf1 in protozoan parasites is scarce. To initiate the study of Maf1 in Leishmania major, we generated a cell line that overexpresses this protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!