Rationale: Tramadol (T) is a strong painkiller drug that belongs to the opioid analgesic group. Several accidental intoxication cases after oral administration of T have been reported in the past decade. Tramadol, its derivatives, and metabolites present information-limited mass spectra with one prominent peak representing the amine-containing residue; therefore, their structural determination based on both electron impact mass spectrometry (EI-MS) and ESI-MS/MS spectra could be misleading.

Methods: A novel analytical method for the structural elucidation of tramadol, its four homologs, and its two main phase I metabolites (N-desmethyltramadol and O-desmethyltramadol) was developed using chemical modification and liquid chromatography-high-resolution tandem mass spectrometry (LC-HR-MS/MS) with Orbitrap technology.

Results: After chemical derivatization, each of the investigated T series exhibited informative mass spectra that enabled better exposition of their structures. The developed method was successfully implemented to explicitly identify the structures of tramadol and its N-desmethyltramadol metabolite in urine samples at low ng/mL levels.

Conclusions: An efficient derivatization-aided strategy was developed for rapidly elucidating the structure of tramadol-like compounds. The method is intended to assist forensic chemists in better diagnosing T and its analogs and metabolites in clinical or forensic toxicology laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.9881DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
structural elucidation
8
elucidation tramadol
8
tramadol derivatives
8
derivatives metabolites
8
chemical derivatization
8
liquid chromatography-high-resolution
8
chromatography-high-resolution tandem
8
tandem mass
8
mass spectra
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!