The aim of this study was to evaluate the effect of starvation and refeeding on the growth and food intake of gilthead seabream () and seabass () and on the growth and nitrogen uptake of glasswort () in a polyculture aquaponic system under 12 ppt salinity for 75 days. Nine small-scale autonomous aquaponic systems were used, each containing 10 gilthead seabreams (average weight of 6.33 ± 0.73 g and average length of 5.73 ± 0.72 cm) and 10 seabasses (5.82 ± 0.77 g and 6.35 ± 0.45 cm), as well as five glasswort plants. Three fish feeding treatments were performed, a control (A), in which fish were fed daily until satiation, and two fasting treatments for 4 (B) and 7 days (C). Fish growth performance was significantly lower ( < 0.05) in the C treatment for both species compared to treatments A and B. Food consumption (FC) and feed conversion ratio (FCR) were significantly higher ( < 0.05) in treatment C. Glasswort growth performance was significantly higher in treatment C ( < 0.05). The results showed that the 4-day food-deprived fish were similar to the control fish by achieving partial compensatory growth. The more extended fasting period (7 days) resulted in significantly lower growth performance. The lipid and nitrogen retention levels in both species were significantly lower in food-deprived fish than in the control fish both before and during compensatory growth. The results suggest that a feeding schedule involving starvation-refeeding cycles is a promising feed management option for these species in polyculture aquaponic systems. The effect of food deprivation was also significantly beneficial ( < 0.05) for the growth performance of glasswort compared to the control treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330207 | PMC |
http://dx.doi.org/10.7717/peerj.17814 | DOI Listing |
Comp Biochem Physiol B Biochem Mol Biol
December 2024
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
The potential of insects as alternative ingredients in animal feeds is well-established. However, limited information is available on the use of insect oils as alternative lipid sources in aquafeeds. To address this, a study was conducted on gilthead seabream (Sparus aurata) juveniles to evaluate the effects of including black soldier fly (Hermetia illucens) larvae oil (HIO).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.
The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.
View Article and Find Full Text PDFSci Rep
December 2024
Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
The aim of the study was to investigate the potential preventive use of short-chain fatty acids (SCFAs) to modulate inflammatory responses in gilthead seabream (Sparus aurata) skin. Initially, in vitro experiments were conducted to evaluate the effects of various concentrations of butyric acid, acetic acid and propionic acid, as well as their combination, on the cytotoxicity and cell viability of three different cell lines. The results determined the safe concentration of SCFAs, which was then used for an in vivo study.
View Article and Find Full Text PDFJ Fish Dis
December 2024
Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
Red sea bream iridovirus (RSIV) occurs mainly at high water temperatures and infects more than 30 different species of fish. In Asia, infected fish cause mass mortality every year. Molecular diagnostics is a technology that efficiently detects and identifies a wide range of fish pathogens through rapid and sensitive analysis of their genetic material.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2024
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
Hermetia illucens larvae oil (HIO) is a promising new ingredient that can potentially be an alternative lipid source in aquafeeds. To assess its viability in gilthead seabream juvenile diets, a 10-week feeding trial was performed, and the effects on antioxidant, immune, and inflammatory responses were evaluated. Four diets were formulated to include HIO at increasing levels: 0, 4, 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!