Air pollution has long been a significant environmental health issue. Previous studies have employed diverse methodologies to investigate the impacts of air pollution on public health, yet few have thoroughly examined its spatiotemporal heterogeneity. Based on this, this study investigated the spatiotemporal heterogeneity of the impacts of air pollution on public health in 31 provinces in China from 2013 to 2020 based on the theoretical framework of multifactorial health decision-making and combined with the spatial durbin model and the geographically and temporally weighted regression model. The findings indicate that: (1) Air pollution and public health as measured by the incidence of respiratory diseases (IRD) in China exhibit significant spatial positive correlation and local spatial aggregation. (2) Air pollution demonstrates noteworthy spatial spillover effects. After controlling for economic development and living environment factors, including disposable income, population density, and urbanization rate, the direct and indirect spatial impacts of air pollution on IRD are measured at 3.552 and 2.848, correspondingly. (3) China's IRD is primarily influenced by various factors such as air pollution, economic development, living conditions, and healthcare, and the degree of its influence demonstrates an uneven spatiotemporal distribution trend. The findings of this study hold considerable practical significance for mitigating air pollution and safeguarding public health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327077 | PMC |
http://dx.doi.org/10.3389/fpubh.2024.1422505 | DOI Listing |
Environ Res
January 2025
Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany.
Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong. Electronic address:
The broad application of various pesticides guarantees the development of agriculture all over the word but has ultimately led to their ubiquitous release into the environment as hazardous chemical residues. Diamide insecticides (DAIs) are regarded as new choice for prevention and protection of agricultural crops and city landscaping plants from the pests in more and more countries. However, their presence in fine particulate matter (PM) and associated health risks have not been studied.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China. Electronic address:
Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland; Centre for Climate Research SGGW, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland. Electronic address:
Air pollution is highest in winter. The high concentration of particulate matter (PM) and trace elements (TE) after the growing season is influenced by increased pollutant emissions, unfavorable meteorological conditions, and the low efficiency of air phytofiltration. Plants that can remove pollutants from the air during the growing season are leafless in autumn/winter, and therefore unable to capture PM/TE effectively.
View Article and Find Full Text PDFHealth Econ
January 2025
School of International Trade and Economics, University of International Business and Economics, Beijing, China.
While the direct health impacts of air pollution are widely discussed, its indirect effects, particularly during pandemics, are less explored. Utilizing detailed individual-level data from all designated hospitals in Wuhan during the initial COVID-19 outbreak, we examine the impact of air pollution exposure on treatment costs and health outcomes for COVID-19 patients. Our findings reveal that patients exposed more intensively to air pollution, identified by their residence in downwind areas of high-polluting enterprises, not only had worsened health outcomes but also consumed more medical resources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!