Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pakistan has limited natural gas reserves, and most are found onshore. This article reports on the problems of an onshore gas gathering network (GGN) analysed through steady-state simulation modelling using PIPESIM software. The research methodology incorporates a comprehensive steady-state hydraulic analysis considering fluid flowing velocity limitations, liquid holdup and slugging along with other issues faced by gas gathering networks. The steady-state hydraulic analysis has led us to pinpoint specific GGN pipelines facing critically low gas velocities and consequent liquid holdup. Addressing these issues involved application of PIPESIM software for modelling, considering various operating schemes of gas-producing wells and their associated pipelines. To select an optimal operating scheme, the study utilized the Analytic Hierarchy Process (AHP) for operational optimization, to identify the most effective solution for reduced liquid holdup, improving production, and ensuring the safe operation among available alternatives. Findings from our hydraulic analysis highlight the importance of reducing GGN outlet pressure to mitigate challenges associated with liquid holdup which causes slugging and back pressure effect at source leading to low production and poor performance of the GGN. Study of three alternative cases reveals that decreasing outlet pressure lowers the liquid holdup, improve gas flowing velocities, and enhanced overall production. These findings validate our hypothesis that reducing GGN outlet pressure is a viable strategy to lower the liquid holdup in pipelines. This research offers significant value by providing a comprehensive solution to GGN liquid holdup, low flowing velocities, back pressure and low production challenges. The integration of steady-state hydraulic analysis, simulation modelling with PIPESIM, and the application of AHP for optimization contributes novel insights into the optimization of operation of gas gathering networks. Emphasizing the reduction of liquid holdup and enhancing production through outlet pressure adjustments offers a practical framework for optimizing the functionality of gas gathering networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327592 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e35006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!