Dissimilar metal combinations are frequently employed in the power generation and nuclear industries. Where stainless steel piping systems are connected to pressure vessels made of low-alloy steel, the subsystems of liquid rocket engines also have different, dissimilar material combinations. Dissimilar welding plays a vital role in ensuring the integrity, performance, and reliability of components and structures operating in cryogenic environments, in this study, plates of AISI 316L and AISI 321, each 5 mm thick, were successfully joined using the pulsed current gas tungsten arc welding (PCGTAW) technique with optimized process parameters. These weld joints are mostly present in rocket engines subjected to a cryogenic environment. Due to the low temperature environment, the metallurgical properties of these joints change, which affects their mechanical properties. As it is a structural part, PCGTAW welding is most common method for joining this kind of material. In this work, Microstructural analysis of the weldment revealed a combination of vermicular, lacy, and acicular ferrite morphologies in the fusion zone at the root, mid, and crown locations. Furthermore, no solidification cracking was detected in the weldments based on the optical micrograph and SEM results. Intergranular corrosion (IGC) testing indicated the absence of a ditch structure, suggesting that the heat-affected zone (HAZ) on both sides of the weld joint was not being susceptible to sensitization. However, the HAZ of the AISI 316L side exhibited coarser grains compared to AISI 321. Analysis of tensile properties revealed a significant influence of the testing environment on the tensile strength of the dissimilar welded joints. At room temperature, the average ultimate tensile strength (UTS) was measured as 621 MPa. Remarkably, at cryogenic conditions, the average tensile properties significantly increased to 1319 MPa. Microhardness analysis showed the highest hardness associated with the AISI 321 side. The fusion zone exhibited a large deviation in the hardness profile (205 ± 10 HV), with the highest average hardness observed in the middle part of the weld. However, the hot cracking behavior of the weld was investigated by using a suutula diagram at various locations of the weld. The investigation revealed that the Cr/Ni ratio exceeded the critical threshold value, effectively diminishing the propensity for hot cracking in the fusion zone. Overall, these findings underscore the effectiveness of the PCGTAW technique in joining dissimilar materials, as well as the importance of microstructural and mechanical property evaluations, especially under extreme operating conditions such as cryogenic temperatures. Paraphrase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328046PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e34648DOI Listing

Publication Analysis

Top Keywords

aisi 321
16
fusion zone
12
solidification cracking
8
intergranular corrosion
8
pulsed current
8
current gas
8
gas tungsten
8
tungsten arc
8
arc welding
8
welding pcgtaw
8

Similar Publications

The neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), derived neutrophil-to-lymphocyte ratio (dNLR), neutrophil-to-lymphocyte and platelet ratio (N/LP ratio), aggregate index of systemic inflammation (AISI), systemic inflammation response index (SIRI), and systemic inflammation index (SII) have emerged as noteworthy determinants in evaluating the severity and mortality prognosis of inflammatory diseases. In order to predict mortality rate, this study aimed to assess the impact of systemic inflammatory markers on both men and women who were admitted to the hospital due to SARS-CoV-2 infection. The laboratory parameters of the 2007 COVID-19 patients were analyzed in a retrospective study (men = 1145 and women = 862).

View Article and Find Full Text PDF
Article Synopsis
  • This study examines how laser surface modifications can improve wear resistance, hardness, and friction in both dry and lubricated conditions.
  • The research uses nanosecond pulsed laser treatment to create different surface structures on steel, aiming to increase wear resistance and decrease the coefficient of friction (COF).
  • Findings suggest that laser texturing enhances hardness, modifies surface wettability, reduces COF, and promotes better lubrication retention, making it a beneficial technique for industries needing durable materials.
View Article and Find Full Text PDF

Dissimilar metal combinations are frequently employed in the power generation and nuclear industries. Where stainless steel piping systems are connected to pressure vessels made of low-alloy steel, the subsystems of liquid rocket engines also have different, dissimilar material combinations. Dissimilar welding plays a vital role in ensuring the integrity, performance, and reliability of components and structures operating in cryogenic environments, in this study, plates of AISI 316L and AISI 321, each 5 mm thick, were successfully joined using the pulsed current gas tungsten arc welding (PCGTAW) technique with optimized process parameters.

View Article and Find Full Text PDF

Cold Drawing of AISI 321 Stainless Steel Thin-Walled Seamless Tubes on a Floating Plug.

Materials (Basel)

August 2023

Department of Manufacturing Processes and Production Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland.

The paper presents the results of an analysis of the process of drawing AISI 321 stainless steel thin-walled seamless tubes on a floating plug. The influence of the geometry of dies and plugs, drawing velocity, and lubricants on the possibility of carrying out the pipe drawing process without a loss of strength of the lubricating film and, consequently, disturbance of the forming process and tube cracking, and also on the temperature in the drawing process, the mechanical properties of the tubes drawn, and the microhardness and roughness of the inner and outer surface of the tubes was investigated. The parameters of the drawing tools used were as follows: angle of drawing dies α = 16° and floating plugs with angles of inclination of the conical part of the plug β = 11.

View Article and Find Full Text PDF

Many municipal facilities, such as pools and drinking water treatment facilities, are subject to ongoing maintenance due to the corrosion of their metallic materials caused by chlorine, leading to high costs and a possible risk to public health. A proper study of the employed product's effect could lead to the use of better materials, which significantly increase the lifetime of metallic equipment more attacked by corrosion, through studies evaluating their cost-effectiveness. This paper was carried out with the objective of studying the degradation of some metallic materials (AISI 316L, AISI 321 and Duplex 14462) used in the referred facilities in order to select the one that possessed a better behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!