The adaptive neuro-fuzzy inference system (ANFIS), central composite experimental design (CCD)-response surface methodology (RSM), and artificial neural network (ANN) are used to model the oxidation of benzyl alcohol using the -butyl hydroperoxide (TBHP) oxidant to selectively yield benzaldehyde over a mesoporous ceria-zirconia catalyst. Characterization reveals that the produced catalyst has hysteresis loops, a sponge-like structure, and structurally induced reactivity. Three independent variables were taken into consideration while analyzing the ANN, RSM, and ANFIS models: the amount of catalyst (A), reaction temperature (B), and reaction time (C). With the application of optimum conditions, along with a constant (45 mmol) TBHP oxidant amount, (30 mmol) benzyl alcohol amount, and rigorous refluxing of 450 rpm, a maximum optimal benzaldehyde yield of 98.4% was obtained. To examine the acceptability of the models, further sensitivity studies including statistical error functions, analysis of variance (ANOVA) results, and the lack-of-fit test, among others, were employed. The obtained results show that the ANFIS model is the most suited to predicting benzaldehyde yield, followed by RSM. Green chemistry matrix calculations for the reaction reveal lower values of the -factor (1.57), mass intensity (MI, 2.57), and mass productivity (MP, 38%), which are highly desirable for green and sustainable reactions. Therefore, utilizing a ceria-zirconia catalyst synthesized via the inverse micelle method for the oxidation of benzyl alcohol provides a green and sustainable methodology for the synthesis of benzaldehyde under mild conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325411PMC
http://dx.doi.org/10.1021/acsomega.4c02174DOI Listing

Publication Analysis

Top Keywords

benzyl alcohol
16
-butyl hydroperoxide
8
surface methodology
8
artificial neural
8
neural network
8
adaptive neuro-fuzzy
8
neuro-fuzzy inference
8
inference system
8
oxidation benzyl
8
tbhp oxidant
8

Similar Publications

Converting biomass-derived molecules like 5-hydroxymethylfurfural (HMF) into value-added products alongside hydrogen production using renewable energy offers significant opportunities for sustainable chemical and energy production. Yet, HMF electrooxidation requires strong alkaline conditions and membranes for efficient conversion. These harsh conditions destabilize HMF, leading to humin formation and reduced product purity, meanwhile membranes increase costs.

View Article and Find Full Text PDF

Suppressing over-oxidation is a crucial challenge for various chemical intermediate synthesis in heterogeneous catalysis. The distribution of oxidative species and the substrate coverage, governed by the direction of electron transfer, are believed to influence the oxidation extent. In this study, we present an experimental realization of surface coverage modulation on a photoelectrode using a photo-induced charge activation method.

View Article and Find Full Text PDF

Water-assisted electrocatalytic oxidation of alcohols into valuable chemicals is a promising strategy to circumvent the sluggish kinetics of water oxidation, while also reducing cell voltage and improving energy efficiency. Recently, transition metal (TM)-based catalysts have been investigated for anodic alcohol oxidation, but success has been limited due to competition from the oxygen evolution reaction (OER) within the working regime. In this study, NiCo-based Prussian blue analog (PBA) was electrochemically activated at the anodic potential to produce a Co-Ni(O)OH active catalyst with a nanosheet-like architecture.

View Article and Find Full Text PDF

The objective of this study was to produce new and renewable bio-based plasticizers from used soybean cooking oil (USCO). First, USCO was completely converted into free fatty acids (FFAs) using lipase from Candida rugosa. Next, these FFAs were enzymatically esterified with benzyl alcohol in solvent-free systems.

View Article and Find Full Text PDF

Anilido-oxazoline-ligated iron complexes, including bis(anilido-oxazolinate) iron(II), mononuclear iron(II) alkyl and aryloxide, as well as the dinuclear analogues, were synthesized, and their catalytic performance on ring-opening polymerization (ROP) has been studied. Transmetalation of FeCl(THF) with in situ-generated anilido-oxazolinate lithium afforded the bis(anilido-oxazolinate) iron complexes and . Half-sandwich anilido-oxazolinate iron trimethylsilylalkyl complexes and could be synthesized in good yields via taking pyridine as an L-type ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!